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ABSTRACT
We revise formal and numerical aspects of collinear and non-collinear density functional theories in the context of a two-component self-
consistent treatment of spin–orbit coupling. Theoretical and numerical analyses of the non-collinear approaches confirm their ability to yield
the proper collinear limit and provide rotational invariance of the total energy for functionals in the local-density or generalized-gradient
approximations (GGAs). Calculations on simple molecules corroborate the formal considerations and highlight the importance of an effective
screening algorithm to provide the sufficient level of numerical stability required for a rotationally invariant implementation of non-collinear
GGA functionals. The illustrative calculations provide a first numerical comparison of both previously proposed non-collinear formula-
tions for GGA functionals. The proposed screening procedure allows us to effectively deal with points of small magnetization, which would
otherwise be problematic for the evaluation of the exchange–correlation energy and/or potential for non-collinear GGA functionals. Both
previously suggested formulations for the non-collinear GGA are confirmed to be adequate for total energy calculations, provided that the
screening is achieved on a sufficiently fine grid. All methods are implemented in the CRYSTAL program.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051447

I. INTRODUCTION

The Kohn–Sham Density Functional Theory (KS-DFT) is
the de facto workhorse for studying extended systems from a
first-principles approach. Calculations on such extended systems
are usually performed within the collinear approach to KS-DFT
first suggested by von Barth and Hedin.1 In this theory, the
exchange–correlation (xc) energy Exc depends in a local, semi-
local, or non-local way on the electron density n and only one
of the three Cartesian components of electron magnetization
m = [mx, my, mz], typically chosen along the z Cartesian axis (i.e.,
Exc = Exc[n, mz]).

Despite the success of the collinear approach, the limitation
of expressing the xc energy as a functional of only one of the
three Cartesian components of magnetization can be insufficient

in certain cases, including geometrically frustrated states of mat-
ter. Such states are found, for example, in the naturally occurring
face-centered-cubic phase of bulk Fe and minerals of the Jarosite
and Garnet families, which exhibit the ideal Kagomé lattice (in the
surface) or the hyper-Kagomé lattice (in the bulk).2–6 These materi-
als carry states that can be described from a scalar-relativistic (SR)
Hamiltonian that includes an electron–electron operator, which
depends explicitly on spin. However, perhaps more importantly, the
collinear xc energy expressions are also insufficient for describing
fermionic systems if other spin-dependent operators are present in
the Hamiltonian, the most notable example being the spin–orbit
coupling (SOC) operator.

Indeed, if the Hamiltonian depends on spin, the total energy
obtained from a collinear xc expression will change according to the
direction of the spin-quantization axis. An arbitrary choice of the z
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axis for spin quantization means that the results of a collinear cal-
culation would vary according to the orientation of the Cartesian
frame (the calculation is said not to be rotationally invariant). The
development of non-collinear (NC) approaches, on the other hand,
represents efforts to restore the rotational invariance by instead writ-
ing the xc energy as a functional of all three Cartesian components
of magnetization (i.e., Exc = Exc[n, mx, my, mz]).7–20

The NC approaches provide a starting point for developing
calculation methods based on more rigorous DFTs for treating
fermionic systems in a fully relativistic context (i.e., including both
scalar-relativistic and spin–orbit coupling effects). Indeed, if the rel-
ativistic Hamiltonian is written in a four-component spinor basis,
then the appropriate formulation is the so-called four-current DFT
(i.e., Exc = Exc[J]).21–23 If it is instead written in a two-component
spinor basis, then the appropriate relativistic formulation is the spin-
current DFT (SCDFT) in which the xc energy depends not only on
the electron density and magnetization but also on the three compo-
nents of the orbital-current density j = [ jx, jy, jz] and a total of nine
components from the three spin-current densities Ji = [Jix, Jiy, Jiz],
i = x, y, z (i.e., Exc = Exc[n, mx, my, mz , j, Jx, Jy, Jz]).24–27 The appar-
ent daunting task of generalizing NC functionals to also depend
on all the different components of the SOC-induced orbital- and
spin-current densities is, however, greatly simplified by the inclu-
sion of a fraction of exact non-local Fock exchange, through spin-
current hybrid functionals in the local-density approximation or
generalized-gradient approximation (LDA or GGA) of the SCDFT,
as was recently shown by some of the present authors.28 The use
of such hybrid functionals, however, requires explicitly specifying
the non-interacting KS reference as a single Slater determinant.
This limitation to a single-reference can be insufficient for systems
of strong multi-reference character, especially because of the pres-
ence of the spin-dependent SOC operator. In this case, more elab-
orate multi-reference treatments would be necessary in accordance
with the ideas of ensemble DFT.29–46 The generalization of SCDFT
to a practical calculation approach on such ensembles of inter-
acting electronic states is an open and interesting future research
direction.

The most common method to generalize DFT to NC mag-
netism is the approach first described by Kubler et al., originally
formulated for the LDA and hereafter referred to as “canonical” NC
theory.7 At variance with the usual collinear theory (where the spin-
quantization axis is taken everywhere along z), the quantization axis
is now allowed to vary from point to point and to locally adopt the
direction of electron magnetization. When used with LDA function-
als, the theory is numerically very stable and also reduces properly
to the result of the corresponding collinear functional when magne-
tization is indeed (anti-)parallel everywhere (the so-called “collinear
limit”). Considerable work has also been performed toward imple-
menting this formulation for time-dependent DFT.47–53 Several
attempts have been made to generalize this canonical non-collinear
theory to functionals beyond the simple LDA.9,10,12–14,20,54,55 In many
cases, serious numerical problems have been reported. Sometimes,
these problems have been partly circumvented by throwing away
unstable terms in the xc potential.12–14,20 In other cases, the actual
approach used beyond LDA is not entirely outlined,10 or the numer-
ical instability of the implementation is acknowledged in later pub-
lications.8,9 Moreover, some authors have reported formal problems
with the canonical theory, which make generalizations to GGA or

meta-GGA functionals to no longer reduce to the collinear limit.8,11

This apparent lack of reduction to the proper collinear limit was
used, in part, as justification to develop an alternate formulation of
the NC approach termed the Scalmani–Frisch (SF) formulation.8,11

The SF NC theory has successfully been employed in the relativis-
tic calculation of excitation spectra17,19,56 and zero field splitting as
well as various magnetic properties (EPR, NMR, and paramagnetic
NMR).20

Given the above-mentioned challenges, one consequence is that
the rotational invariance of the canonical approach beyond the LDA
has not before been studied formally and numerically. Indeed, if the
supposed lack of reduction in the canonical NC formulation beyond
the LDA to the proper collinear limit were to be true, then the
question also arises as to whether this approach is truly rotationally
invariant.

Here, we provide thorough formal analysis and illustrative cal-
culations of the NC theories in both the canonical and SF formu-
lations, which show that they achieve the proper collinear limit
for LDA and GGA functionals and confirm their rotational invari-
ance. The calculation examples, however, stress the importance of
an effective screening algorithm, which is required in practical cal-
culations to achieve the necessary degree of numerical stability for
rotational invariance. The illustrative calculations provide a first
numerical comparison of previously proposed NC formulations for
functionals beyond the LDA. All the formulations of NC-DFT dis-
cussed in this paper have been implemented in a developmental
version of the public CRYSTAL program.57

II. FORMAL ASPECTS
We refer to Paper I58 for the description of the notation,

in particular for the adopted notation for vectors and matrices.
The present implementation, as described elsewhere in the liter-
ature,28,58–60 is based on a two-component Kramers-unrestricted
approach, where SOC and SR effects are both treated self-
consistently from relativistic effective-core potential (RECP) oper-
ators. These are mono-electronic, non-local operators, which enter
into the Hamiltonian and are obtained by fitting a set of solid-
spherical Gaussian functions to potentials derived from compara-
tively very accurate all-electron four-component atomic Dirac–Fock
calculations.61,62

The presence of the SOC operator implies that the eigen-
functions of the Hamiltonian are complex two-component spinors,
which, in our case, are, in turn, expanded as a linear combination of
n f real-atomic orbitals χμ(r),

Ψi(r) =
n f

∑

μ=1

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

cα
μ,i

0

⎞

⎠

+

⎛

⎝

0

cβ
μ,i

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

χμ(r), (1)

where cσ
μ,i (with σ = α, β) are complex molecular orbital (MO) coef-

ficients that are determined by solving the corresponding self-
consistent field (SCF) equations (either Fock or Kohn–Sham). From
the subset of occupied two-component MO spinors in Eq. (1), a
complex-Hermitian one-particle density matrix is built as follows:

[Dσσ′
]

μν
≡

occ

∑

i
cσ

μi[c
σ′
νi ]
∗

. (2)
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In the present implementation in the CRYSTAL code, the χμ
atomic orbitals are expressed as a linear combination of real solid-
spherical Gaussian-type functions up to angular momentum quan-
tum number l = 4 (i.e., g-type functions).63

A. Fundamental variables in relativistic density
functional theory

Any practical formulation of the DFT requires a definition
of fundamental density variables from which density functional
approximations (DFAs) are built. In the four-component approach,
the corresponding formulation is based on the four-current J.21

In the two-component approach, the appropriate formulation is
the SCDFT,24–27 whereby the contribution to the functional from
SOC-induced orbital-current j and spin-current Jx, Jy, Jz densities
can be treated through an inclusion of a fraction of non-local Fock
exchange in the Hamiltonian.28,59

The remaining ingredients to be considered explicitly are the
particle-number (or total) density7–16,21,64

n(r) ≡
occ

∑

i
Ψ†

i (r)Ψi(r), (3)

and the magnetization vector m(r) whose Cartesian components
are defined as

mc(r) ≡
occ

∑

i
Ψ†

i (r)σ̂cΨi(r), (4)

where c = x, y, z labels a Cartesian component and σ̂c are the usual
2 × 2 complex Pauli matrices given in Eq. (4) of Paper I.58 By
introducing the following compact notation:

nRσσ′(r) = ∑
μν
R[Dσσ′

]
μν

χμ(r)χν(r),

nIσσ′(r) = ∑
μν
I[Dσσ′

]
μν

χμ(r)χν(r),
(5)

the total density and magnetization can be expressed in terms of the
elements of the density matrix as follows:58

n(r) = nRαα(r) + nRββ(r), (6)

mx(r) = nRβα(r) + nRαβ(r), (7)

my(r) = nIβα(r) − nIαβ(r), (8)

mz(r) = nRαα(r) − nRββ(r). (9)

B. Generalized DFT treatment
We now discuss the treatment of SOC within the DFT

in a two-component framework. Here, we show how the
approach can be generalized to local-density approximation and
generalized-gradient approximation (LDA and GGA) of the
exchange–correlation (xc) operator, as well as LDA and GGA
hybrid functionals, where a fraction a of non-local Fock exchange is

included in its definition. That is to say, we are interested in formu-
lations of DFT associated with energy expressions of the following
form:

E = Tr(hD) +
1
2

Tr(CD) +
a
2

Tr(KD) + Exc. (10)

The exact form of the mono-electronic h matrix elements and bi-
electronic Coulomb C and exchange K matrix elements and strate-
gies for calculating the traces mentioned above were discussed in
Paper I.58 The formal analyses presented here depend on the for-
mulation of the xc approximation (i.e., whether the functional is of
LDA- or GGA-type), but not on the specific form of the functional
itself. Exc is the exchange–correlation energy, which is expressed
using integrals over space of the exchange–correlation functional
Fxc,

Ei
xc = (1 − a)∫ Fx[Qi

]dr + ∫ Fcorr[Qi
]dr, (11)

where the exchange–correlation functional is written as a sum of
exchange Fx and correlation Fcorr contributions,

Fxc[Qi
] ≡ Fx[Qi

] + Fcorr[Qi
]. (12)

For a = 0, the formalism reduces to that of plain LDA or GGA for-
mulations. In the above equation, the exchange–correlation func-
tional depends on a set of variables Qi, where i is an index that labels
the different formulations (either i = col for the collinear formula-
tion i = can for the canonical NC formulation or i = sf for the SF NC
formulation). In the following, we drop the superscript i on all vari-
ables other than Qi for notational convenience. More explicitly, Qi

is spanned by density variables ni
± and gradient variables γi

±±,

Qi
(r) = [Qi

1(r), Qi
2(r), Qi

3(r), Qi
4(r), Qi

5(r)]

= [ni
+(r), ni

−(r), γi
++(r), γi

−−(r), γi
+−(r)]. (13)

The density variables ni
± depend on the value of the total density and

magnetization at position r in space, while the gradient variables γi
±±

depend on both the value and gradients (with respect to r) of the
total density and magnetization at position r in space. Hence, the
variables γi

±± are proper to GGA functionals, whereas ni
± are present

in both LDA and GGA functionals. More details on the exact defi-
nitions of these variables are provided in the following. In principle,
meta-GGA forms of the exchange–correlation operator could also
be treated similarly using, however, a larger set of variables, but we
do not discuss these explicitly here.

The Kohn–Sham Hamiltonian is built using the xc potential
V̂xc, which is also written as a sum of exchange and correlation
contributions,

V̂xc(r) ≡ V̂x(r) + V̂corr(r), (14)

and, within a two-component generalization of the theory,
is given by1,7,9

V̂xc(r) = Exc
(r)σ̂0 +∑

c
Bxc

c (r)σ̂c, (15)

where σ̂c are the 2 × 2 complex Pauli matrices, σ̂0 is the 2 × 2 iden-
tity matrix, and both Exc and Bxc

c are defined in terms of functional
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derivatives of the xc energy. More specifically, the xc electrostatic
potential Exc reads

Exc
(r) =

δExc

δn(r)
, (16)

and the Cartesian components Bxc
c of the so-called xc magnetic field

read

Bxc
c (r) =

δExc

δmc(r)
, (17)

where, in the expressions mentioned above, δ is used to represent
the functional derivative.

We can use Bxc to define the local torque of the xc magnetic
field τxc as follows:65–67

τxc(r) = m(r) ×Bxc
(r). (18)

The variables Qi on which the functional depends can, in general, be
chosen such that τxc is locally non-vanishing, even though, in gen-
eral, its integral over all space ∫ τxc(r)dr should be null, such that it
obeys the so-called zero-torque theorem.65–67

The Kohn–Sham Hamiltonian matrix elements are expressed
using mono-electronic (including SR and SOC) and bi-electronic
(Coulomb and exchange) integrals, as well as the xc potential V̂xc
introduced above. For the diagonal spin-blocks, we have

[Hσσ
KS]μν =

[hσσ
]

μν +
[Cσσ
]

μν + a[Kσσ
]

μν

+ (1 − a)[Vσσ
x ]μν +

[Vσσ
corr]μν. (19)

For off-diagonal spin-blocks (i.e., for σ ≠ σ′), all mono-electronic
integrals apart from SOC ones are null, as well as the bi-electronic
Coulomb integrals (as shown in Paper I58), so that we have

[Hσσ′
KS ]

μν
= [hσσ′

SO ]
μν
+ a[Kσσ′

]
μν

+ (1 − a)[Vσσ′
x ]

μν
+ [Vσσ′

corr]
μν

. (20)

The xc potential is described in the following according to
two competing theories: the collinear and non-collinear for-
malisms.1,7–10,12–14 More details are provided in Secs. II C and II D
on the two theories.

C. Collinear density functional theory
In the collinear formalism, the variables Qcol entering the

exchange–correlation functional depend only on the total density n
and z component of the magnetization mz , while the x and y com-
ponents of the magnetization are set to zero. As a consequence, the
x and y components of the xc magnetic field introduced in Eq. (17)
must vanish. From Eq. (15), the xc potential thus reduces to

V̂xc(r) = Exc
(r)σ̂0 + Bxc

z (r)σ̂z . (21)

Given the real nature of both σ̂0 and σ̂z , the xc potential therefore
forms a real block diagonal matrix in spin-space,

Vxc =
⎛

⎝

Vαα
xc 0αβ

0βα Vββ
xc

⎞

⎠

, (22)

whose matrix elements are real Hermitian

[Vσσ
xc ]μν =

[Vσσ
xc ]νμ. (23)

From Eq. (21) and by recalling the definition of the xc electrostatic
potential and xc magnetic field given in Eqs. (16) and (17), we get
the following expressions for the collinear xc potential in terms of
functional derivatives of the xc energy Exc:

V̂αα
xc (r) =

δExc

δnRαα(r)
, (24)

V̂ββ
xc (r) =

δExc

δnRββ(r)
. (25)

The disadvantage of the collinear theory is that rotational
invariance is lost when calculations are performed in the presence
of a SOC operator. The loss of rotational invariance means that a
rigid rotation of the molecule will cause a change in energy. This
occurs because the collinear theory effectively consists of choosing
the spin-quantization axis along z for the xc potential term. Given
that the SOC operator imparts an energy dependence on the orien-
tation of the spin-quantization axis,58 the arbitrary and non-general
choice of the z direction results in loss of rotational invariance.

1. Collinear LDA
As introduced in Sec. II B, LDA xc functionals only depend

on ni
+(r) and ni

−(r), which, in the collinear formalism (in anal-
ogy to the non- or scalar-relativistic one-component approach), are
defined as

ncol
+ (r) = nRαα(r), (26)

ncol
− (r) = nRββ(r) (27)

and are therefore built solely from the real part of the αα and ββ
blocks of the density matrix. From Eqs. (6) and (9), the variables
mentioned above can be shown to depend only on the total density
n and z component of the magnetization mz as

ncol
± (r) =

1
2
[n(r) ±mz(r)]. (28)

From the calculus of variations, for LDA, the functional derivatives
of the energy in Eqs. (24) and (25) reduce to the following partial
derivatives of the xc functional:

V̂σσ
xc (r) =

∂Fxc

∂nRσσ(r)
. (29)

2. Collinear GGA
As discussed above, apart from ni

± introduced above, GGA xc
functionals also depend on gradient variables γi

±±, which, within the
collinear formalism (again, in analogy to the non-relativistic one-
component approach), are defined as

γcol
±±(r) = ∇̂ncol

± (r) ⋅ ∇̂ncol
± (r). (30)

From Eq. (28), it is also easy to see that these variables only depend
on the total density n and z component of magnetization mz ,

γcol
±±(r) =

1
4
∇̂[n(r) ±mz(r)] ⋅ ∇̂[n(r) ±mz(r)]. (31)
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For GGA, the standard calculus of variations gives the following
expression for the xc potential:68

V̂σσ
xc (r) =

∂Fxc

∂nRσσ(r)
− ∇̂ ⋅

⎡
⎢
⎢
⎢
⎢
⎣

2
∂Fxc

∂∣∇̂nRσσ(r)∣
2 ∇̂nRσσ(r)

+
∂Fxc

∂γcol
+−(r)

∇̂nRσ′σ′(r)], (32)

where, in the equation mentioned above, σ ≠ σ′. From Eq. (32), for
GGA functionals, the evaluation of the xc potential would require
the second derivatives of the xc functional (e.g., one from the ∇̂
operator and one with respect to γcol

+−). However, as was first noted by
Pople et al.,68 the matrix elements of the xc potential can be obtained
through integration by parts, such that only the first derivatives of
the functional are required, as follows:

[Vσσ
xc ]μν = ∫

∂Fxc

∂nRσσ(r)
χμ(r)χν(r)dr

+ ∫

⎡
⎢
⎢
⎢
⎢
⎣

2
∂Fxc

∂∣∇̂nRσσ(r)∣
2 ∇̂nRσσ(r) +

∂Fxc

∂γcol
+−(r)

∇̂nRσ′σ′(r)
⎤
⎥
⎥
⎥
⎥
⎦

⋅ ∇̂χμ(r)χν(r)dr. (33)

D. Non-collinear density functional theory
In the non-collinear formalism, the variables entering the

exchange–correlation functional depend on the total density n and
on the three Cartesian components of the magnetization m so that
rotational invariance is ensured even in the presence of the SOC
operator.

Given that the xc functional now depends on the total den-
sity and on the three Cartesian components of the magnetization,
the non-collinear xc potential has the form shown in Eq. (15) and
therefore forms a complex matrix in spin-space,

Vxc =
⎛

⎝

Vαα
xc Vαβ

xc

Vβα
xc Vββ

xc

⎞

⎠

. (34)

Based on Eq. (15) and on the expressions for the Pauli matrices, the
following symmetry properties can be derived. For the diagonal αα
spin-block,

[Vαα
xc ]μν =

[Vαα
xc ]νμ

= ⟨χμ∣Exc
+ Bxc

z ∣χν⟩. (35)

For the diagonal ββ spin-block,

[Vββ
xc ]

μν
= [Vββ

xc ]
νμ

= ⟨χμ∣Exc
− Bxc

z ∣χν⟩. (36)

For the off-diagonal spin-blocks, the matrix elements read as follows:

[Vαβ
xc ]

μν
= [Vαβ

xc ]
νμ
= [Vβα

xc ]
∗

νμ
= [Vβα

xc ]
∗

μν

= ⟨χμ∣Bxc
x − iBxc

y ∣χν⟩. (37)

Hence, the diagonal αα and ββ spin-blocks of the xc potential are
real Hermitian so that only their upper (or lower) triangular parts
need to be computed. The off-diagonal αβ and βα spin-blocks are
complex symmetric so that only the upper (or lower) triangular part
of αβ needs to be calculated.

Depending on the choice of the variables used in the definition
of the xc functional, two different (canonical and SF) formulations
of non-collinear two-component DFT are possible. They are both
reviewed below.

1. The canonical formulation
In the canonical formulation of the non-collinear DFT, the

variables on which Fxc depends are built starting from the gener-
alized density7

n̄(r) =
1
2
[n(r)σ̂0 +∑

c
mc(r)σ̂c]. (38)

By recalling the exact form of the Pauli matrices given in Eq. (4) of
Paper I,58 the generalized density can be written explicitly as follows
in terms of total density and components of magnetization:

n̄(r) =
1
2
⎛

⎝

n(r) +mz(r) mx(r) − imy(r)

mx(r) + imy(r) n(r) −mz(r)

⎞

⎠

. (39)

By performing a unitary transformation on the generalized den-
sity n̄, which diagonalizes locally in space the matrix mentioned
above, one gets the ncan

± variables used in the definition of the xc
functional,8,12

n̄(r)diag
=

⎛

⎝

ncan
+ (r) 0

0 ncan
− (r)

⎞

⎠

, (40)

where the eigenvalues of the matrix are

ncan
± (r) =

1
2
[n(r) ±m(r)], (41)

where m = ∣m∣ is the magnitude of m. A comparison of Eq. (41) with
Eqs. (26) and (27) shows that the non-collinear definition of the ncan

±

variables differs from the collinear definition by replacing mz with m
(i.e., the z component of the magnetization by the absolute value of
the magnetization).

From Eqs. (16) and (17), the xc potential can be written in terms
of ncan

± by noting that, from the chain rule of differentiation,

δExc

δmc
=

δExc

δm
δm
δmc
=

δExc

δm
mc

m
, (42)

where from now on, the dependence on r is dropped. Finally, using
Eq. (38) and taking into account that n = Tr[n̄σ̂0] and mc = Tr[n̄σ̂c]

show that the xc potential operator can be written more succinctly
as a functional derivative of the xc energy with respect to the
generalized density,

V̂xc =
δExc

δn̄
. (43)
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When considering an LDA xc functional, the functional deriva-
tives of the xc energy in Eqs. (16), (17), and (42) reduce to partial
derivatives of the xc functional,

Exc
=
∂Fxc

∂n
, Bxc

c =
mc

m
∂Fxc

∂m
. (44)

In a scalar- or non-relativistic code, the partial derivatives of the xc
functional with respect to n and mz are available. Therefore, for an
LDA functional, one has to simply replace mz by m in the existing
code to generalize it to the canonical non-collinear theory.

GGA xc functionals also depend on the gradient variables γi
±±

that, within the canonical formulation of non-collinear DFT, read as

follows:
γcan
±± =

1
4
{∇̂[n ±m] ⋅ ∇̂[n ±m]}, (45)

where the gradient of the absolute magnetization is calculated as
follows:

∇̂m =
1
m∑c

mc∇̂mc. (46)

Later, we are going to discuss some numerical issues and corre-
sponding solutions related to the treatment of these terms. For appli-
cation to GGA functionals, the standard calculus of variations leads
to the following expressions for the functional derivatives of the xc
energy:

Exc
=

1
2

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

(
∂Fxc

∂ncan
+

+
∂Fxc

∂ncan
−

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ+

− ∇̂ ⋅ [2
∂Fxc

∂γcan
++

∇̂ncan
+ + 2

∂Fxc

∂γcan
−−

∇̂ncan
− +

∂Fxc

∂γcan
+−

(∇̂ncan
+ + ∇̂ncan

− )]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Λ+

⎫
⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

(47)

and

Bxc
c =

mc

2m

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

(
∂Fxc

∂ncan
+

−
∂Fxc

∂ncan
−

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ−

− ∇̂ ⋅ [2
∂Fxc

∂γcan
++

∇̂ncan
+ − 2

∂Fxc

∂γcan
−−

∇̂ncan
− −

∂Fxc

∂γcan
+−

(∇̂ncan
+ − ∇̂ncan

− )]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Λ−

⎫
⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

. (48)

From Eqs. (35)–(37), we see that the matrix elements of the GGA xc
potential are built from [Exc

]μν and [Bxc
c ]μν. Through integration by

parts, we find the following working expressions:

[Exc
]

μν =
1
2
[∫ χμχνΓ+dr + ∫ Λ+ ⋅ ∇̂(χμχν)dr] (49)

and

[Bxc
c ]μν ≈ ∫

mc

2m
χμχνΓ−dr + ∫

mc

2m
Λ− ⋅ ∇̂(χμχν)dr, (50)

where in the passage from Eqs. (48) to (50), the term originating
from the gradient of mc/m is dropped. Thus, Eq. (50) represents
the commonly adopted approximation in which the gradient of the
magnetization is assumed to locally follow the quantization axis
of the magnetization vector for the definition of the xc magnetic
field.12,14,20,55 As will be seen through the numerical examples from
Sec. IV, this approximation does not appreciably affect the rotational
invariance or reduction to the collinear limit of the theory. We leave
the evaluation of terms arising from the gradient of mc/m for future
work.

2. The Scalmani–Frisch formulation
Scalmani and Frisch proposed an alternative formulation of the

non-collinear theory, which differs from the canonical theory illus-
trated above for functionals beyond the LDA.11 This theory adopts
the following definitions for the GGA variables:

γs f
++ or γs f

−− =
1
4
[∇̂n ⋅ ∇̂n + ∇̂ m ⋅ ○∇̂ m]

±
f∇
2
[(∇̂n ⋅ ∇̂ m) ○ (∇̂n ⋅ ∇̂ m)]

1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ξ

(51)

and

γsf
+− =

1
4
[∇̂n ⋅ ∇̂n − ∇̂ m ⋅ ○∇̂ m], (52)

where the dot product identified by the symbol “⋅” runs over the
components of ∇̂, while that identified by the symbol “○” runs over
the components of m. Finally, f∇ is defined as

f∇ = sgn[∇̂n ⋅ (∇̂ m) ○m], (53)

where the signum function “sgn” returns either 1 or −1 according
to the sign of the argument. We obtain expressions for the matrix
elements of the theory of Scalmani and Frisch from the calculus of
variations. We do not show the details of the derivation but report
the final expressions as follows:

[Exc
]

μν =
1
2 ∫

Γ+χμχνdr +
1
2 ∫

{(
∂Fxc

∂γs f
++

+
∂Fxc

∂γs f
−−

+
∂Fxc

∂γs f
+−

)∇̂n

+(
∂Fxc

∂γs f
++

−
∂Fxc

∂γs f
−−

) f∇ Ξ−1
(∇̂n ⋅ ∇̂ m) ○ ∇̂ m}

⋅ ∇̂(χμχν)dr (54)
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and

[Bxc
c ]μν ≈

1
2 ∫

mc

m
Γ−χμχνdr +

1
2 ∫

{(
∂Fxc

∂γs f
++

+
∂Fxc

∂γs f
−−

−
∂Fxc

∂γs f
+−

)

× ∇̂mc + (
∂Fxc

∂γs f
++

−
∂Fxc

∂γs f
−−

) f∇ Ξ−1
(∇̂n ⋅ ∇̂mc)∇̂n}

⋅ ∇̂(χμχν)dr. (55)

As was the case for the canonical formulation, also here for
the SF formulation, Eq. (55) is an approximate expression for the
xc magnetic field matrix elements, this time because terms arising
from the gradient of f

∇
are not considered—see, for instance, Eq.

(57) of Ref. 19. The numerical examples presented in Sec. IV also
suggest here that such terms do not have an appreciable effect on
the rotational invariance and reduction to the collinear limit of the
implementation.

3. Rotational invariance and reduction
to the collinear limit of non-collinear theories

Both the canonical and SF formulations of NC KS-DFT
described in Secs. II D 1 and II D 2 are attempts to restore rota-
tional invariance to existing DFAs for calculations on systems, which
can be described by a Hamiltonian that depends explicitly on spin
(for instance, containing a SOC operator). Although it is intuitive
that the insertion of all three Cartesian components of magnetiza-
tion (rather than only one component) into the xc energy expression
could eventually lead to restoring its rotational invariance, a for-
mal proof (or numerical evidence) to support this assumption for
functionals beyond the LDA is still lacking. Furthermore, a desir-
able property of any NC formulation is that it reduces to the cor-
responding collinear formulation when the magnetization is every-
where (anti)-parallel in space (the so-called “collinear limit”). As a
matter of fact, the supposed lack of the proper collinear limit of
the canonical NC formulation for functionals beyond the LDA was
used, in part, as justification for providing the SF one.8,11 If the lack
of reduction to the correct collinear limit of the canonical NC for-
mulation were to be true, then the question arises as to whether
this approach can, in fact, be shown to truly be rotationally invari-
ant. In this section, we provide formal arguments to support that
both the SF and canonical formulations do indeed reduce to the
proper collinear limit for LDA and GGA functionals and, as a con-
sequence, can also be formally characterized as being rotationally
invariant.

For providing the formal demonstration, it proves useful to
perform a linear transformation, which recasts the xc energy expres-
sion in Eqs. (11)–(13) not as a functional of the variables Qi,
but instead using a new set of variables Pi

= [Pi
1, Pi

2, Pi
3, Pi

4, Pi
5] in

which i = col, can, or sf . The relevant transformation is chosen such
that

Qi
1 = ni

+ =
1
2

Pi
1 +

1
2

Pi
2, (56a)

Qi
2 = ni

− =
1
2

Pi
1 −

1
2

Pi
2, (56b)

Qi
3 = γi

++ =
1
4

Pi
3 +

1
4

Pi
4 +

1
2

Pi
5, (56c)

Qi
4 = γi

−− =
1
4

Pi
3 +

1
4

Pi
4 −

1
2

Pi
5, (56d)

Qi
5 = γi

+− =
1
4

Pi
3 −

1
4

Pi
4. (56e)

Substituting Eqs. (30) and (31) into Eq. (56), we obtain the following
for the collinear formulation:

Pcol
= [n, mz , ∇̂n ⋅ ∇̂n, ∇̂mz ⋅ ∇̂mz , ∇̂n ⋅ ∇̂mz]. (57)

Then, substituting Eqs. (41) and (45) into Eq. (56), we find that for
the canonical NC formulation,

Pcan
= [n, m, ∇̂n ⋅ ∇̂n, ∇̂m ⋅ ∇̂m, ∇̂n ⋅ ∇̂m], (58)

and finally, substituting Eqs. (57)–(59) into Eq. (56), we find that for
the SF formulation,

Ps f
= [n, m, ∇̂n ⋅ ∇̂n, ∇̂ m ⋅ ○∇̂ m, f∇Ξ]. (59)

We start by looking at the reduction to the collinear limit and
rotational invariance of Exc[Pcan

] and then Exc[Ps f
], respectively,

for the canonical and SF NC formulations. This is followed by a
discussion of the collinear limit and rotational invariance of the
corresponding xc potential expressions.

Showing that Exc[Pcan
] reduces to the proper collinear limit

for the specific case of strictly positive mz follows immediately by
comparing Eq. (57) with Eq. (58) and noting that

lim
m→mz

Exc[Pcan
] = Exc[Pcan

]∣
cl

= Exc[n, m, ∇̂n ⋅ ∇̂n, ∇̂m ⋅ ∇̂m, ∇̂n ⋅ ∇̂m]∣
cl

= Exc[n, ∣mz ∣, ∇̂n ⋅ ∇̂n, ∇̂∣mz ∣ ⋅ ∇̂∣mz ∣, ∇̂n ⋅ ∇̂∣mz ∣]

=

®
mz≥0

Exc[n, mz , ∇̂n ⋅ ∇̂n, ∇̂mz ⋅ ∇̂mz , ∇̂n ⋅ ∇̂mz]

= Exc[Pcol
], (60)

in which cl indicates the collinear limit of the argument.
Now, for the remaining case of negative mz , we start by looking

at the behavior of the collinear expression. From Eq. (57), we obtain
the following:

Exc[Pcol
] = Exc[n, mz , ∇̂n ⋅ ∇̂n, ∇̂mz ⋅ ∇̂mz , ∇̂n ⋅ ∇̂mz]

=

®
mz<0

Exc[n,−∣mz ∣, ∇̂n ⋅ ∇̂n, ∇̂∣mz ∣ ⋅ ∇̂∣mz ∣,

− ∇̂n ⋅ ∇̂∣mz ∣]. (61)

Comparing the third line of Eq. (60) with Eq. (61), we see that
the correct collinear limit for the canonical NC formulation can be
obtained, provided that

Exc[n, ∣mz ∣, ∇̂n ⋅ ∇̂n, ∇̂∣mz ∣ ⋅ ∇̂∣mz ∣, ∇̂n ⋅ ∇̂∣mz ∣]

= Exc[n,−∣mz ∣, ∇̂n ⋅ ∇̂n, ∇̂∣mz ∣ ⋅ ∇̂∣mz ∣,−∇̂n ⋅ ∇̂∣mz ∣]. (62)

The key passage is to now realize that Eq. (62) represents nothing
other than the formal statement that the xc energy is invariant to
a global rotation of the spin reference frame (i.e., a rotation of the
spin-quantization axis) from the z direction to the −z direction (or,
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equivalently, an interchange of all α labels for β labels and vice versa).
Given that the expression for the xc energy functional originates
from the theory of von Barth and Hedin1 in which the choice of the
orientation of the spin-quantization axis is arbitrary, the xc energy
expression is necessarily invariant to a global reorientation of the
spin reference frame.

Combining Eqs. (60)–(62), we find that the xc energy expres-
sion from the canonical NC formulation has the correct collinear
limit,

Exc[Pcan
]∣

cl
= Exc[Pcol

]. (63)

The rotational invariance of the xc energy from the canonical NC
formulation can then be shown by choosing a different orienta-
tion for the spin-quantization axis, invoking the invariance of the
xc energy functional to a global rotation of the spin reference frame
and repeating the steps outlined in Eqs. (56)–(62) for the new
orientation.

We now move on to showing the reduction to the collinear
limit (and, as a consequence, also rotational invariance) of the xc
energy expression for the case of the SF NC formulation. A simi-
lar demonstration to that provided above can also be shown for the
SF formulation by first looking at the collinear limit of the individ-
ual gradient variables that are contained in the definition of Ps f in
Eq. (59),

∇̂n ⋅ ∇̂n∣
cl
= ∇̂n ⋅ ∇̂n, (64a)

∇̂ m ⋅ ○∇̂ m∣
cl
= ∇̂mz ⋅ ∇̂mz , (64b)

and

f∇Ξ∣cl = sgn[∇̂n ⋅ (∇̂mz)mz]∣∇̂n ⋅ ∇̂mz ∣

= ∇̂n ⋅ ∇̂∣mz ∣. (64c)

Substituting Eqs. (64a)–(64c) into Eq. (59) and proceeding as in
Eqs. (60) and (61), we also obtain the correct collinear limit for the
xc energy expression from the SF formulation,

Exc[Ps f
]∣

cl
= Exc[Pcol

]. (65)

We now consider the xc potential expressions. Their proper
collinear limit and, consequently, rotational invariance for both SF
and canonical formulations now follow naturally by substituting
Eqs. (63) and (65) into Eqs. (15)–(17),

V̂xc∣cl
=

δExc[Pi
]

δn
σ̂0 +∑

c

δExc[Pi
]

δmc
σ̂c∣

cl

=
δExc[Pcol

]

δn
σ̂0 +

δExc[Pcol
]

δmz
σ̂z . (66)

4. On the treatment of unstable terms of non-collinear
exchange–correlation potentials

We discuss here algorithmic strategies for the evaluation of
delicate terms in the non-collinear xc potential. Several previous
authors have acknowledged numerical issues associated with the
evaluation of non-collinear xc potentials, particularly so for xc
functionals beyond the LDA.8–14,17,19,67 However, to the best of our

knowledge, an effective screening algorithm for dealing with these
problems in both the canonical and SF formulations is yet to be
presented in the literature.

All the difficulties previously noted in the literature are related
to factors Rc = mc/m, which are ill-defined at those points in space
where the magnetization is small. Although, formally, the xc func-
tionals and potential are everywhere finite, the problem lies in their
accurate numerical evaluation. In general, the mc/m factors appear
both in the expressions for the variables on which GGA xc function-
als depend and in the expression for the xc magnetic field (for all
functionals, including LDA). In the canonical theory, the challeng-
ing terms occur in both the definition of the GGA variables—see
Eq. (46)—and in the xc potential; see Eq. (50). For the theory of
Scalmani and Frisch, the problematic terms do not occur in the
definition of the GGA variables but are still present in the definition
of the xc magnetic field term of the potential in Eq. (55).

For LDA functionals, from Eqs. (17) and (44), points of small
magnetization can be safely disregarded because the mc/m factors
in the potential multiply ∂Fxc/∂m, which is also vanishing for van-
ishing m. This is not the case for GGA functionals, where the mc/m
factors sometimes multiply gradients of the magnetization, gradients
of the total density, or gradients of the atomic orbitals, which are not
necessarily small where m is small. See, for example, Eqs. (46) and
(50) for the canonical theory.

As a consequence, the treatment of these terms requires a very
careful local screening of the magnitude of the magnetization m and
of its individual Cartesian components mc at each point of the DFT
grid. Here, we introduce a screening algorithm that can be used
with any non-collinear formulation and sketch its main features. The
algorithm is presented for the case where the mc/m terms multiply
gradients of the magnetization, but it can be very easily extended to
the cases where the mc/m factors multiply, instead, gradients of the
total density or gradients of the atomic orbitals.

At each point in space (i.e., at each point of the DFT integra-
tion grid), the absolute value ∣mc∣ of the three Cartesian components
of the magnetization m is screened according to a threshold (here,
set to 10−27 a.u.). Two distinct cases are identified and treated dif-
ferently: (1) all three components are individually smaller than the
threshold or (2) at least one component is larger than the threshold.
We treat these two cases as follows:

1. The three components of the magnetization are all small. We
locally set

m = 0,

∇̂m = ∑
c
⟨

mc

m
⟩∇̂mc,

where the gradient of the magnetization ∇̂m at that point is
expressed in terms of the gradients of the three Cartesian com-
ponents of the magnetization at the same point ∇̂mc, while
the pre-factors ⟨mc/m⟩ are average values for mc/m. In the
present implementation, the mean quantities ⟨mc/m⟩ are cal-
culated by averaging mc/m over the atomic basin to which
the current point of the DFT grid belongs. The size of each
atomic basin is determined using the same atomic radii that
are used to calculate the DFT integration weights. These quan-
tities are computed from the values of the magnetization of the
previous iteration of the SCF (or of the starting guess at the
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first iteration). Other choices for the partitioning of space for
calculating the averaged ⟨mc/m⟩ quantities could be possible,
but we leave this to future work. These average values are
essential to ensure numerical stability at those (many) points
where mc and m are so small that their ratio could not be
evaluated with any reasonable degree of confidence. More-
over, they are also useful when mc is too small to reasonably
determine its sign (positive or negative). For these reasons,
it is beneficial to, instead, associate an average value to mc/m
calculated over the atomic basin of the current point in space.

2. At least one of the three Cartesian components of the magne-
tization is large in the absolute value. The largest component,
in the absolute value, is determined, and the following signed
quantity is defined:

mmax = sgn(mx +my +mz)max(∣mx∣, ∣my∣, ∣mz ∣).

At this point, a screening on the “local collinearity” is per-
formed. The absolute value of the other two, non-maximum,
components of the magnetization is checked relative to ∣mmax∣.
Two distinct cases are identified, which are treated differently
as follows:

(a) Both non-maximum Cartesian components are small
relative to ∣mmax∣, and therefore, the system is locally
collinear. The two small components are put to zero,
and the problem reduces to the collinear one with the
quantization axis along ∣mmax∣. In this case, we set

m = ∣mmax∣,

∇̂m = sgn(mmax)∇̂mmax.

(b) At least one of the non-maximum Cartesian compo-
nents is not small relative to ∣mmax∣. In this case, we
explicitly set

m =
√

m2
x +m2

y +m2
z ,

∇̂m = ∑
c

Rc∇̂mc,

where the factors Rc are determined as follows based on
the value of the ratios ∣mc∣/m: if the ratio ∣mc∣/m is small,
then we set Rc = 0; otherwise, we set it to Rc = mc/m.

III. COMPUTATIONAL DETAILS
We have implemented all the DFT formulations discussed

above in a developmental version of the CRYSTAL17 code.57 To val-
idate our implementation and discuss numerical strategies for its
use, we have chosen a test set of small molecular systems and have
also performed similar calculations with the latest public version
of the DIRAC69 and TURBOMOLE70 codes. Both SR and SOC effects are
treated from RECPs. The systems are similar to those discussed in
Paper I,58 that is, the I2, CH3I, IH, and TlBr molecules, in both a
neutral state (closed-shell electronic configurations) and a positively
charged state obtained by removing one electron from the molecules
(open-shell electronic configurations), namely, I+2 , CH3I+, IH+, and
TlBr+. We refer the reader to Paper I58 for the details on the used
basis sets, RECPs, and molecular geometries.

The numerical integration required for calculating the xc
energy and matrix elements was achieved with our implementa-
tion on an unpruned grid. For the comparison with other imple-
mentations, this grid (denoted as G1) contained 75 radial points
and a Lebedev accuracy level of 16, corresponding to 974 angu-
lar points for each radial point.71–73 The quadrature weights pro-
posed by Becke were used in all calculations.74 For calculations
with the DIRAC and TURBOMOLE codes, the finest available grids were
used, which are similar to the one chosen with our implementation,
and all integral screenings were deactivated. The SCF procedures
with all codes were converged down to a criterion on the energy of
1 ×10−9 hartree a.u. Calculations were performed with the SVWN5
LDA functional,75,76 the PBE GGA functional,77 and the PBE0 and
B3LYP hybrid-GGA functionals.78,79 The guess for the SCF proce-
dure was generated from a superposition of SR atomic-HF den-
sity matrices using an approach described in Ref. 80. The magne-
tization generated from each of the atomic SR density matrices is
rotated along a desired direction using an approach described in
Paper I.58

For the tests that were performed with only our implemen-
tation, we used a finer numerical DFT grid (denoted as G2)
consisting of 500 radial points and a Lebedev accuracy level of
29, corresponding to 5810 angular points and a criterion on the
energy for convergence of the SCF of 1 ×10−12 hartree (unless
explicitly stated otherwise). More specific details are provided in
the supplementary material in which example input decks are
provided.

IV. RESULTS AND DISCUSSION
We discuss below several aspects of the methodologies for-

mally illustrated in Sec. II: (i) we compare our implementation to
those available in other codes; (ii) we document the reduction to the
collinear limit of different non-collinear formulations of the DFT;
and (iii) we quantify the degree of rotational invariance of different
non-collinear formulations.

A. Comparison with previous implementations
We first report comparisons of our implementation with those

available in the DIRAC and TURBOMOLE codes for validation purposes.
We start by discussing results on the closed-shell electronic configu-
rations, where since the magnetization is vanishing, and as a conse-
quence, in Eq. (17), δExc/δm = 0 and all the formulations coincide.
The closed-shell tests thus permit us to test aspects of the imple-
mentations that are not related to the treatment of non-collinear
magnetization (e.g., the integration grid, accuracy of the evalua-
tion of electron repulsion integrals, and the implementation of the
xc functionals and their derivatives). Calculations were performed
with and without the SOC operator included in the Hamiltonian,
and the energy differences of these two calculations, ΔESOC, are
tabulated.

In Table I, we report ΔESOC calculated with our implementa-
tion, as well as the differences of ΔESOC with respect to those calcu-
lated with the other implementations. These are denoted in the table
as ΔΔEX, where X denotes the code used for the calculation, that is,
X = TUR or DIR. It can be seen from the table that the agreement
with DIRAC is very satisfactory in all cases because ΔΔEDIR is always
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TABLE I. Energies for the closed-shell electronic configurations. ΔESOC = ESOC
− E0 is the SOC contribution to the energy as obtained with our implementation.
ΔΔEX = ΔEX − ΔESOC is the difference between the SOC energy contribution com-
puted with the program X = TUR or DIR (where TUR stands for TURBOMOLE and DIR
stands for DIRAC) and that with our implementation in CRYSTAL17. All quantities are
reported in atomic units (hartree).

I2 CH3I IH TlBr

LDA

ΔESOC −7.7 × 10−3
−3.2 × 10−3

−3.0 × 10−3
−3.6 × 10−2

ΔΔEDIR +4.8 × 10−9
+4.0 × 10−9

+1.0 × 10−9
⋅ ⋅ ⋅

ΔΔETUR +1.2 × 10−5
+1.3 × 10−6

+6.9 × 10−7
+2.6 × 10−6

PBE

ΔESOC −7.9 × 10−3
−3.2 × 10−3

−3.0 × 10−3
−3.5 × 10−2

ΔΔEDIR +1.3 × 10−8
+1.8 × 10−9

+2.1 × 10−9
⋅ ⋅ ⋅

ΔΔETUR +1.4 × 10−5
+1.4 × 10−6

+2.9 × 10−7
+2.5 × 10−6

PBE0

ΔESOC −7.7 × 10−3
−3.1 × 10−3

−2.9 × 10−3
−3.4 × 10−2

ΔΔEDIR +1.1 × 10−8
+1.1 × 10−9

+1.9 × 10−9
⋅ ⋅ ⋅

ΔΔETUR +1.3 × 10−5
+1.0 × 10−6

+3.6 × 10−7
+1.9 × 10−6

on the order of 1 ×10−9 hartree, which is remarkably the same accu-
racy as the convergence of the SCF. The only exception is the PBE
or PBE0 calculations on I2, where ΔΔEDIR is instead on the order of
1 ×10−8 hartree.

As was also noted in Paper I,58 for the case of TlBr, it was
not possible to use the DIRAC code in exactly the same computa-
tional conditions as in the other codes. This is due to the fact that
the RECP-SOC implementation in DIRAC is only available with a
basis of Cartesian Gaussian-type functions that differ from spheri-
cal Gaussian-type functions (used in our implementation and in the
TURBOMOLE one) starting from angular momentum l = 2 (i.e., start-
ing from d-type functions). Given that TlBr has occupied d orbitals
in the valence, it was not possible to perform the comparison with
DIRAC in this case. For all other molecular systems, no l = 2 or higher
angular momentum functions were included in the valence basis sets
so that we were able to perform the comparison.

The agreement with TURBOMOLE is still very satisfactory but less
good because this implementation uses the resolution of identity
(RI) approximation for at least the evaluation of the Coulomb inte-
grals. The RI approximation introduces inaccuracies, which do not
perfectly cancel between the calculations with and without SOC.
As such, ΔΔETUR are on the order of 1 ×10−5 hartree (for the I2
molecule) to 1 ×10−7 hartree (for the IH molecule). These values are,
however, still more than sufficient to confirm the correctness of the
implementation, being two to four orders of magnitude smaller than
the SOC contribution to the energy. The agreement with both codes
is generally better with LDA (where only the density needs to be
evaluated on the numerical grid) or with PBE0 (which includes a sig-
nificant portion of Fock exchange and hence is in a larger part ana-
lytical). A worst agreement is generally found using PBE, where both
the density and its gradient need to be evaluated on the numerical
grid.

We now discuss the calculations on the open-shell electronic
configurations, which are obtained by removing one electron from
the same molecules discussed above. As in Paper I,58 we were unable
to perform comparable calculations with the DIRAC code on open-
shell electronic configurations as, to the best of our knowledge, it
is not possible to perform single-determinant Kramers-unrestricted
calculations with the DIRAC code at present. Therefore, the compar-
ison can only be made against the TURBOMOLE code. What is more,
we are only able to use one formulation for each functional using
the TURBOMOLE code, that is, the canonical non-collinear formulation.
The comparison of calculations done with both implementations is
reported in Table II. It can be seen from Tables I and II that the SOC
contribution to the total energy, ΔESOC, is now increased by a factor
of three to four by removing one electron from all systems, except for
TlBr, where ΔESOC instead only increases by about 10%. A similar
result was reported in Paper I58 with the HF theory. The comparison
with the TURBOMOLE implementation is now slightly less impressive
than for the closed-shell systems because the evaluation of the xc
matrix elements and potential now also requires a numerical inte-
gration containing functions of the magnetization (and possibly its
gradient) and not only the density. ΔΔETUR is now mostly on the
order of 1 ×10−4 hartree, except for TlBr+, where it is, instead, on the
order of 1 ×10−3 hartree. We note, however, that ΔΔETUR is still at
least one order of magnitude smaller (in absolute value) than ΔESOC,
which helps confirm the correctness of the implementations.

The reported effect of SOC on the total energies of the posi-
tively charged ions in Table II is also reflected in associated changes
to their valence properties. Tables S1 and S2 quantify the changes
in the particle-number n and z-component magnetization mz Mul-
liken populations, reported as differences from the calculations
with/without SOC for the positively charged open-shell systems.
Figure S1 provides the associated changes in the orbital energy
levels for states lying close to the HOMO. Tables S1 and S2 and
Table II and Fig. S1 show that the changes in the total energies
from SOC have a considerable effect on the valence properties of
the molecules, as reflected, for example, in significant changes to

TABLE II. Energies for the open-shell electronic configurations. See the caption of
Table I for the definition of all quantities. Values are given in atomic units (hartree).
Calculations are performed with the canonical non-collinear theory described in
Sec. II D 1.

I +2 CH3I+ IH+ TlBr+

LDA

ΔESOC −2.2 × 10−2
−1.6 × 10−2

−1.6 × 10−2
−4.2 × 10−2

ΔΔETUR +8.9 × 10−5
+5.6 × 10−4

+1.3 × 10−4
+4.1 × 10−3

PBE

ΔESOC −2.1 × 10−2
−1.4 × 10−2

−1.4 × 10−2
−3.9 × 10−2

ΔΔETUR +9.6 × 10−5
+3.7 × 10−4

+1.4 × 10−4
+1.3 × 10−3

PBE0

ΔESOC −2.1 × 10−2
−1.4 × 10−2

−1.4 × 10−2
−3.9 × 10−2

ΔΔETUR +1.1 × 10−4
+3.4 × 10−4

+1.5 × 10−4
+2.1 × 10−3
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the HOMO–LUMO gaps. Table S1 shows the effect of the xc func-
tional on the changes in the n and mz Mulliken populations of
TlBr+ induced by SOC. It is seen that the PBE0 calculations induce
changes in the populations on the order of 10−1 a.u. from SOC,
while the LDA and PBE ones only induce changes on the order of
10−3 a.u. Indeed, given that the PBE0 functional includes a non-
vanishing fraction of Fock exchange, it allows us to include the
SOC-induced orbital- and spin-current densities in the definition
of the electron–electron potential,28,59 which may lead to larger
SOC-induced changes in the valence properties of the molecules.

B. The reduction to the collinear limit of non-collinear
theories

We now discuss the reduction to the collinear limit of non-
collinear formulations of the DFT, that is, the ability of non-collinear
theories to provide the same energy of the collinear theory in those
cases where the magnetization is everywhere collinear. To do so,
we consider the four open-shell systems without SOC (i.e., in the
absence of any torque that can rotate the initial magnetization) so
that the magnetization remains aligned to the direction along which
it was pointing in the collinear guess.

Table III reports the energy differences between the collinear
theory and the different NC formulations (CAN stands for
“canonical” and SF for “Scalmani–Frisch”). The table supports the
formal analysis provided in Sec. II D 3. Indeed, it is seen that
both NC formulations yield energy differences with respect to the
collinear one that are very small, being on the order of 10−15–10−11

hartree (for comparison, the tolerance on the energy for convergence
of the SCF procedure was 10−12 hartree, as stated in Sec. III). The
reported energy differences are smaller for the Scalmani–Frisch for-
mulation rather than the canonical one. This is expected from the
considerations outlined in Sec. II D 4 in which it was pointed out that

the delicate mc/m terms that can lead to numerical instabilities occur
in the expressions for both the xc energy and potential in the CAN
formulation, but only in the potential for the SF formulation. This
results in the SF formulation being slightly more numerically sta-
ble than the CAN one, which is demonstrated in the smaller energy
differences reported in Table III. However, given that the energy dif-
ferences never exceed a value on the order of 10−11 hartree, we can
conclude from Table III that both NC formulations are more than
adequate from the point of view of reduction to the collinear limit
for total energy calculations.

C. The rotational invariance of non-collinear theories
We now discuss the rotational invariance of the collinear

approach and of the various non-collinear formulations in the pres-
ence of SOC. The tests are performed on the I+2 linear molecule, for
which seven different orientations are explored: from parallel to the
z axis, 0○, to parallel to the x axis, 90○. At each orientation, an initial
atomic guess for the magnetization is used, which is parallel to the
molecular axis. The absolute differences between the energies of the
various orientations with respect to that obtained when the molecule
is along z (taken as a reference) are reported in Table IV for the
plain GGA functional PBE and hybrid-GGA functionals PBE0 and
B3LYP or Table V for the LDA functional. The last row of both tables
reports average energy differences over all the explored orientations.
For perfectly rotationally invariant formulations of the theory, the
reported energy differences should be vanishingly small. To quantify
the effect of the numerical grid on the rotational invariance, Table S3
of the supplementary material provides further calculations with the
different formulations for GGA functionals in which the smaller G1
numerical grid was used instead of the finer G2 grid. Furthermore,
Table S4 of the supplementary material provides GGA calculations
in which the SOC operator was excluded from the Hamiltonian.

TABLE III. Deviation from the collinear limit of various non-collinear formulations (CAN stands for “canonical” and SF for
“Scalmani–Frisch” described in Secs. II D 1 and II D 2, respectively). The quantization axis is along the xyz diagonal. The
reported quantities are energy differences (in atomic units) between non-collinear formulations and the collinear one for the
open-shell electronic configurations in the absence of SOC.

I +2 CH3I+ IH+ TlBr+

LDA

CAN/SF −4.7 × 10−13
+2.3 × 10−13

−2.0 × 10−14
+1.1 × 10−12

PBE

CAN +6.9 × 10−13
−7.1 × 10−14

+4.1 × 10−12
−2.8 × 10−13

SF +2.5 × 10−14
−5.8 × 10−13

+3.0 × 10−15
+5.7 × 10−14

PBE0

CAN +1.3 × 10−12
+8.5 × 10−12

+1.5 × 10−12
+1.7 × 10−11

SF −1.1 × 10−14
−2.5 × 10−13

+7.0 × 10−15
−1.1 × 10−13

B3LYP

CAN +2.5 × 10−12
−1.4 × 10−11

+6.0 × 10−14
−2.6 × 10−13

SF −1.0 × 10−12
−1.3 × 10−11

−5.0 × 10−15
−3.1 × 10−13
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TABLE IV. Rotational invariance of GGA collinear and non-collinear formulations of DFT with SOC. The linear I+2 molecule is studied in seven different orientations (from parallel
to the z axis, 0○, to the x axis, 90○). The atomic guess magnetization is always parallel to the axis of the molecule. For each orientation, the absolute difference (in hartree)
between the computed energy and that obtained when the molecule is along z (∣E − Ez∣), and the number of cycles needed to converge the SCF is reported. The last row reports
the average over all the explored orientations, ∣av∣, of the absolute value of the quantities in their respective columns.

Collinear Non-collinear

Canonical Scalmani–Frisch

PBE PBE0 PBE PBE0 B3LYP PBE PBE0 B3LYP

0○ Reference 52 Reference 68 Reference 65 Reference 97 Reference 91 Reference 53 Reference 78 Reference 73
10○ 7.7 × 10−5 52 6.3 × 10−5 113 4.2 × 10−9 70 2.1 × 10−9 110 5.8 × 10−9 101 2.3 × 10−9 58 5.5 × 10−9 107 1.8 × 10−9 100
22○ 3.9 × 10−4 52 3.1 × 10−4 131 1.3 × 10−9 65 3.3 × 10−9 124 5.1 × 10−9 118 2.3 × 10−9 65 7.7 × 10−10 125 1.1 × 10−9 115
45○ 1.5 × 10−3 53 1.2 × 10−3 182 2.7 × 10−10 69 8.2 × 10−9 134 4.1 × 10−8 114 4.7 × 10−10 68 5.7 × 10−9 133 2.0 × 10−9 124
68○ 3.1 × 10−3 72 1.1 × 10−3 1437 7.2 × 10−10 65 2.8 × 10−9 115 5.6 × 10−9 116 1.7 × 10−9 65 1.4 × 10−9 124 5.9 × 10−10 115
80○ 1.7 × 10−3 194 9.6 × 10−4 950 4.1 × 10−9 70 2.0 × 10−9 110 5.9 × 10−9 101 2.4 × 10−9 56 1.5 × 10−10 107 2.0 × 10−9 98
90○ 1.6 × 10−3 51 3.2 × 10−3 82 1.5 × 10−10 65 1.5 × 10−10 97 1.5 × 10−10 91 1.6 × 10−10 54 5.6 × 10−9 78 1.6 × 10−10 73
∣av∣ 1.4 × 10−3 78 1.1 × 10−3 423 1.8 × 10−9 67 3.1 × 10−9 112 9.1 × 10−9 105 1.5 × 10−9 60 3.2 × 10−9 107 1.1 × 10−9 100

From Tables IV and V, it is clear that, as expected, the collinear
approach does not ensure rotational invariance when the SOC oper-
ator is included in the Hamiltonian at both the LDA and GGA levels.
Indeed, the average deviation of the energy among different orien-
tations is very large on the order of 1 ×10−3 hartree for LDA, PBE,
and PBE0. This lack of rotational invariance is also reflected in the
amount of cycles required to converge the SCF for the different ori-
entations, which shows very large variations for the different orien-
tation. For the case of LDA, the rotational invariance is fully regained
by the non-collinear formulation as the average deviation becomes
2.2 ×10−10 hartree. It is interesting that almost identical values are
obtained from both the SF and CAN formulations for GGA func-
tionals without SOC (see Table S4), which confirms the numerical
robustness of the NC GGA implementation.

Table IV shows that both formulations (CAN and SF) for NC
GGA calculations also allow us to restore the rotational invariance
of the calculation when a SOC operator is included in the Hamil-
tonian, with the average deviation of the energy being, however,
about an order of magnitude higher than for LDA calculations,

at 1.5–3.2 ×10−9 for PBE and PBE0, and 1.1–9.1 ×10−9 for B3LYP.
A greater amount of SCF cycles is required to converge the PBE0
calculations as compared to the PBE ones, which results in slightly
larger average deviations of the total energy (1.8 ×10−9 hartree for
PBE vs 3.1 ×10−9 hartree for PBE0 and the CAN formulation). Both
the CAN and SF formulations of PBE and PBE0 achieve essentially
identical degrees of rotational invariance with the finer G2 numeri-
cal grid used for the calculations in Table IV, as the reported average
deviations of the total energy are very similar for both formulations.
The results in Table S3, however, show that the SF formulation is
confirmed to be slightly more numerically stable than the CAN one
when the coarser G1 numerical grid is used because energy devia-
tions are slightly smaller (e.g., 7.7 ×10−8 hartree with the SF formu-
lation vs 1.3 ×10−7 hartree with the CAN formulation for the PBE
functional). From Table IV, the SF formulation also appears more
stable for the B3LYP calculations with the G2 grid, as the energy
deviation is lower by almost an order of magnitude (e.g., 1.1 ×10−9

hartree with the SF formulation vs 9.1 ×10−9 hartree with the CAN
formulation). The superior numerical stability of the SF formulation

TABLE V. Same as Table IV, but now, the results are reported for the LDA, using both the collinear or non-collinear theories,
with and without the inclusion of the SOC operator in the Hamiltonian.

Collinear Non-collinear

With SOC Without SOC With SOC Without SOC

0○ Reference 49 Reference 50 Reference 50 Reference
10○ 7.1 × 10−5 49 5.0 × 10−11 50 4.9 × 10−11 56 5.0 × 10−11 50
22○ 3.6 × 10−4 48 1.8 × 10−11 50 1.6 × 10−11 65 1.8 × 10−11 50
45○ 1.4 × 10−3 48 4.4 × 10−10 50 4.4 × 10−10 65 4.4 × 10−10 50
68○ 2.1 × 10−3 510 5.7 × 10−10 50 5.7 × 10−10 62 5.7 × 10−10 50
80○ 1.9 × 10−3 273 5.7 × 10−11 50 5.9 × 10−11 56 5.7 × 10−11 50
90○ 1.9 × 10−3 48 1.6 × 10−10 51 1.6 × 10−10 51 1.6 × 10−10 50
∣av∣ 1.3 × 10−3 146 2.2 × 10−10 50 2.2 × 10−10 58 2.2 × 10−10 50
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FIG. 1. Spatial distribution of electronic magnetization for the I+2 molecule in the xz plane, as computed with the PBE xc functional, upon an inclusion of SOC, with three
formulations of the GGA theory: collinear COL, canonical CAN, and Scalmani–Frisch SF. The molecular axis and atomic guess magnetization are progressively rotated from
the x axis (left) to the z axis (right). The small black arrows have lengths that reflect the magnitude and direction of the x and z components of the magnetization, while the
color represents the magnitude m of the magnetization vector. The absolute value of the energy difference of each solution with respect to that obtained with the molecule
along z is reported on top of the panels, and the number of cycles needed to converge the SCF is reported on the bottom of the panels. All quantities are reported in atomic
units.

is also reflected in the lower number of cycles required to converge
the SCF, as compared to the CAN formulation. In the most extreme
case (G1 grid and PBE functional), the SCF is converged at an aver-
age of nine cycles faster with the SF formulation, as convergence of
the SCF took an average of 61 cycles for the SF formulation instead
of 70 cycles for the CAN one (see the last row of Table S3). However,
given that the average deviations of the energies in Table IV are simi-
lar for both the SF and CAN formulations, we can also conclude that
from the point of view of rotational invariance, both formulations
are more than adequate for total energy calculations.

A further insight into how the NC GGA implementation allows
us to restore the rotational invariance can be obtained by looking at
Fig. 1. Figure 1 provides contour plots of magnetization from the
PBE calculations as the molecule is rotated from the x axis (right
of Fig. 1) to the z axis (left of Fig. 1). The top row of Fig. 1 shows
the magnetizations obtained from the collinear formulation, and the
two other rows provide those from the CAN NC and SF NC formu-
lations. It is seen from those obtained by the collinear formulation
that although the magnetizations were oriented along the molecular
axis in the guess, they are partially rotated toward the z axis dur-
ing the SCF procedure such that the plotted arrows no longer point
directly along the molecular axis. Instead, using the CAN or SF NC
formulations, the magnetizations are seen to always remain along
the molecular axis throughout the calculation such that the plotted
arrows rotate along with the molecule.

V. CONCLUSIONS

The formalism of Kramers-unrestricted collinear and all pre-
viously reported formulations of non-collinear density functional
theory (DFT) for the self-consistent treatment of spin–orbit cou-
pling (SOC) in electronic structure calculations has been revised.
Various approaches have been implemented in the CRYSTAL program
and have been compared both formally and using test examples on
small molecules.

The formal analysis shows that all formulations for calcu-
lations in the non-collinear generalized-gradient approximation
(GGA) formally reduce to the proper collinear limit and are,
as a consequence, rotationally invariant. The illustrative calcu-
lations provide a first numerical comparison of both previously
suggested non-collinear formulations for GGA functionals. They
highlight the importance of using an effective screening algorithm
for treating delicate terms that appear in the expressions for the
exchange–correlation energy and/or potential. If the screening is
achieved on a sufficiently fine grid, then all non-collinear GGA for-
mulations are adequate for total energy calculations. The formula-
tion of Scalmani and Frisch is shown to be slightly more numer-
ically stable (in terms of the consistency of energies obtained for
different orientations of the molecules and reduction to the collinear
limit) than the canonical formulation. However, the differences are
very small and non-collinear GGA calculations including spin–orbit
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coupling can be performed with either formulation with a rotational
invariance down to an order of 1.0 ×10−9 hartree, with the present
implementation.

SUPPLEMENTARY MATERIAL

See the supplementary material for input decks, a discussion
of the effect of SOC on the eigenvalue spectrum, and charge/spin
populations of the open-shell molecules, and tables to quantify the
rotational invariance of the formulations of non-collinear DFT for
GGA functionals.
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