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ABSTRACT

We present a formulation of relativistic linear response time-dependent density functional theory for the calculation of electronic excitation
energies in the framework of the four-component Dirac-Coulomb Hamiltonian. This approach is based on the noncollinear ansatz originally
developed by Scalmani and Frisch [J. Chem. Theory Comput. 8, 2193 (2012)] and improves upon the past treatment of the limit cases in
which the spin density approaches zero. As a result of these improvements, the presented approach is capable of treating both closed- and
open-shell reference states. Robust convergence of the Davidson-Olsen eigenproblem algorithm for open-shell reference states was achieved
through the use of a solver which considers both left and right eigenvectors. The applicability of the present methodology on both closed-
and open-shell reference states is demonstrated on calculations of low-lying excitation energies for Group 3 atomic systems (Sc>*~Ac’*) with
nondegenerate ground states, as well as for Group 11 atomic systems (Cu-Rg) and octahedral actinide complexes (PaCl¢~, UCIg, and NpFe)

with effective doublet ground states.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121713

. INTRODUCTION

Linear response time-dependent density functional theory
(LR-TDDFT) is a widely used technique for the calculation of
electronic excitation energy spectra'’ due to its favorable bal-
ance between accuracy and computational efficiency. However,
approaches to LR-TDDFT, which incorporate relativistic spin—orbit
coupling (SOC) effects variationally, have seen comparatively mod-
est development. This is steadily changing due to the increas-
ing prominence of a number of areas in which a more accurate
description of relativistic phenomena is desirable. Such areas include
X-ray spectroscopy, phosphorescence of organometallic complexes,
zero-field-splitting, and other spin-related phenomena in magnetic
materials.'’""”

A key reason for the relatively low usage of relativistic
LR-TDDFT methods is the technical challenge posed by their

efficient implementation, particularly if they are intended to be
applied to open-shell species. Nonetheless, computationally efficient
implementations of two-component LR-TDDFT, featuring varia-
tional inclusion of spin-orbit coupling (SOC) effects, which are
capable of calculating phosphorescence lifetimes of organometal-
lic compounds, have recently been presented."\““’ Furthermore, the
present authors have demonstrated that a four-component method-
ology is applicable to systems with up to 100 atoms, for the cal-
culation of nuclear magnetic resonance and electron paramagnetic
resonance parameters.” '

Relativistic approaches to LR-TDDFT can be loosely classi-
fied using a combination of two criteria. The first criterion is the
method by which SOC and other relativistic effects are accounted
for. These range from highly accurate methods employing
four-component Dirac-Coulomb and Dirac-Coulomb-Breit Hamil-
tonians, more approximate methods based on two-component
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Hamiltonians, to methods in which SOC is incorporated using per-
turbation theory. The former of these is more rigorous and costly
techniques well suited to a precise description of systems featuring
strong relativistic effects, while the latter is more computationally
efficient, albeit more approximate, methods suited for the treatment
of larger systems, and those not requiring accurate description of
relativistic phenomena. The second criterion by which LR-TDDFT
methods, which include SOC may be classified, is the approach
taken to ensure the rotational invariance of the DFT functional.
This is typically accomplished either through use of a fully non-
collinear DFT functional, which, in general, depends on gradients
of the spin magnetization, or through use of the adiabatic local
density approximation (ALDA).” >’ The latter approach is more
approximate as it uses an ALDA kernel regardless of the type of
functional used to compute the ground-state wave function, yet
its numerical stability means it is currently the more popular of
the two. Methods of all types often employ the Tamm-Dancoff
approximation (TDA),” which increases the robustness of the
eigenproblem solvers (EPS), albeit at the expense of computational
accuracy.

Major developments in the field of relativistic LR-TDDFT
methods featuring variational inclusion of SOC began with the inde-
pendent works of Gao et al.”’ in the four-component framework
and Wang and Ziegler’’ in the two-component framework. Both
works combine noncollinear DFT theory with the ALDA approx-
imation. The current status of the field is described in the review
of Liu and Xiao,’' where the interested reader can find comprehen-
sive discussion of currently available relativistic LR-TDDFT meth-
ods. Three of these methods are of particular relevance to the cur-
rent article and merit further discussion. Bast et al.”’ presented
LR-TDDFT theory for closed-shell reference states in the frame-
work of the Dirac-Coulomb Hamiltonian with a full noncollinear
DEFT kernel. The present authors consider this to be the preferred
method when starting from a closed-shell reference state. Other
LR-TDDFT methods that include SOC variationally and only con-
sider closed-shell reference states introduce either minor improve-
ments at the four-component level of theory or use approximate
two-component Hamiltonians to gain, e.g., higher computational
efficiency.” Li et al.”* made an important step forward by taking into
consideration open-shell reference states. In this method, termed
sf-X2C-S-TDA-SOC, many-electron states are first obtained by the
LR-TDDFT based on a scalar-relativistic Hamiltonian, with subse-
quent diagonalization of the SOC operator over the basis of these
states. A major advantage of this approach is that it guarantees full
spin symmetry in the first stage of the calculation. Drawbacks of
this method are the use of the ALDA kernel for important spin-flip
transitions, the use of the TDA approximation when treating open-
shell species, and the fact that this method is not suited to systems
which exhibit strong SOC effects since it includes SOC nonvaria-
tionally. Finally, Egidi et al.” presented an elegant method based
on a two-component Hamiltonian, applicable to both closed- and
open-shell reference states, utilizing a fully noncollinear DFT func-
tional. However, at the time of writing, the numerical results of this
method for the prediction of electronic spectra of systems with open-
shell reference states have only been demonstrated on UO%*, a sys-
tem for which the ground state is considered nondegenerate’**
with a single-determinant Kramers-restricted configuration (see
further discussion in Sec. IV). It is worth noting that while there
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has been significant progress on relativistic LR-TDDFT as applied
to closed-shell reference states, progress with regard to open-shell
states remains limited, with the exception of the above discussed
works.”*"

Many of the challenges associated with noncollinear DFT
methods stem from the need to preserve the rotational invariance
of results following the introduction of SOC terms into the Hamil-
tonian. Ideally, this would be accomplished through the use of
genuine noncollinear DFT functionals, which satisfy this require-
ment by virtue of their mathematical definition. Some work has
already been done to this end.”’"** Of particular note is the work of
Tellgren,“ where a noncollinear variable, gi [Eq. (18)], appears in
an expression for the lower bound of the kinetic energy density.
This is an important step toward rigorous noncollinear general-
ized gradient approximation (GGA) functionals and also partially
validates the a posteriori definition of noncollinear variables found
in the method of Scalmani and Frisch.”’ In this second approach
to noncollinear DFT, the variables used in collinear DFT func-
tionals are replaced by their noncollinear counterparts. While not
entirely rigorous, until a genuine noncollinear functional is devel-
oped and validated, the use of such noncollinear variables is the
most practical option from an implementation perspective. Early
works in this direction can be found in articles by Kubler et al,”
Sandratskii,*® and van Wiillen,"” in which the theory of noncollinear
LDA functionals was developed. Unfortunately, attempts to directly
extend this approach from LDA to GGA-based functionals have
thus far been frustrated by numerical instabilities.”"** Scalmani and
Frisch* resolved many of these instabilities through an elegant non-
collinear ansatz, which introduces rotationally invariant variables
for GGA functionals. Moreover, this ansatz allows for nonzero local
torque on the spin magnetization, while satisfying the global zero-
torque theorem.”® On the other hand, this approach does not ade-
quately distinguish between the transverse and longitudinal spin
density gradients, the significance of which is discussed at length
in Ref. 41.

In this work, we aim to predict excitation energies using a
method which includes relativistic effects variationally, allowing
us to treat systems containing elements across the periodic table.
This goal is achieved through the use of a four-component linear
response time-dependent density functional theory approach based
on a Kramers-unrestricted reference state (4c-LR-KU-TDDFT),
combined with the noncollinear methodology proposed by Scalmani
and Frisch."* As such, the method is fully relativistic by design, is
applicable to both closed- and open-shell reference states, and is
inherently capable of describing spin-flip and spin-forbidden tran-
sitions. An interesting consequence of this approach is the method’s
prediction of the first excitation energy of an effective doublet sys-
tem, which is zero due to the energetic degeneracy of the Kramers
pair. Another illustrative consequence is that in the case of closed-
shell systems, the method yields nonzero singlet-triplet transition
dipole moments (which correspond to spin-flip transitions; see
Ref. 49), thus describing the physical mechanism responsible for
phosphorescence.

In the following, Sec. II begins with a summary of the the-
oretical background of the new four-component linear response
Kramers-unrestricted TDDFT method (Sec. II A), followed by a
formulation of a noncollinear exchange-correlation potential and
kernel (Sec. II B), and definitions of its behavior in important
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limit cases (Sec. I C). The section concludes with a presentation
of an improved Davidson-Olsen eigenproblem solver (Sec. II D),
where both left and right eigenvectors are used to construct
the trial subspace. Section III contains computational details of
a number of calculations used to illustrate possible applications
of the method. Results of these calculations are discussed in
Sec. I'V.

Il. THEORY AND IMPLEMENTATION

In this work, indexes obey the following conventions: i, j denote
occupied orbitals, a, b denote unoccupied positive- and negative-
energy orbitals, p denote all positive- and negative-energy orbitals,
and k, I denote Cartesian indices. Greek letters, 4, v, A, 7, are flattened
four-component atomic orbital basis indices, which are employed to
reduce the indexation complexity arising from the multicomponent
nature of the spinor basis. Each flattened index specifies a scalar basis
function, yy,, while also encoding the four-by-four matrix by which
Xn is multiplied as a consequence of the restricted kinetic balance
(RKB) condition.”””" Accordingly, the uth atomic orbital function,
X%, corresponds to a vector with four components

1 0 )
0 G-p mnxm

RKB RKB
Xm,y = Xm‘nn = ( 1
2x0°P

where p is a flattened index, y = n#, ¢ is the speed of light, p represents
the momentum operator, m, n=1... 4, y, are scalar atomic orbitals
(Gaussian-type functions in this work), and ¢ is a vector defined by
three Pauli matrices

0 1 0 —i 10
£ ) ) P

Atomic units are used throughout this work, and summation over
repeated indices is assumed unless stated otherwise. Bold font
indicates either a matrix or a vector quantity, depending on the
context.

A. Four-component linear response
Kramers-unrestricted TDDFT theory
(4c-LR-KU-TDDFT)

The LR-TDDFT and LR-TDHF theories are well-established
in the literature;' hence, only a brief overview is included here. To
calculate vertical excitation energies in the framework of the LR-
TDDFT or LR-TDHF theories, one needs to solve the following
eigenvalue equation:

(_1;* _i)(i‘):w(i‘) ©)

where w represents an excitation energy, | X Y) is a transition vector,
and matrices A and B have the following structure:

Aai,hj = (ea - si)é\abé\ij + K[le,/\TC;aCViC/{}CTba (4)
Bai,hj = Kyv,).rc;‘ac\’ic)’beTj’ (5)
K;w,z\r(f) = K}T\f)lr(g) + K[):lsAT(E) (6)

ARTICLE scitation.org/journalljcp

Molecular orbital coefficients, Cyp, and one-electron energies, ¢, are
solutions of the Dirac-Fock equation (the summation over index p
is not assumed),

(1o + Vi (®) + VIS (©) | Cp = 298 Cops 7)
By = (Xa " [cat- p+ P+ VIUXTEP), (8)
S = (X" PG), ©)

where V™ is the nuclear-electron electrostatic potential, with the
nuclear charge distribution represented by a Gaussian function,”
and & and ' are four-component matrices of form

(0 ¢ (00 o
“_(& 0)’ ﬁ__(o 1)' (10)

The scalar parameter, &, weights the exact-exchange with the DFT
exchange-correlation (xc) contribution. The components of the
two-electron Hartree-Fock (hf) potential, V' and kernel, K™, may
be expressed as

V,l?xf(f) = K;?xf,)t‘r(g)D‘rAs Dy = CTiC)Ti) (11)

K= [f ( ) OUE) _ Oe) OL(%) )dVlde,

F1 =7, |71 = 72|
(12)

where 7 is an electron position vector, and the overlap distribution
matrix has the form
0 RKB\* 1 RKB
Q,uv = (Xm,,u ) Xy - (13)
The noncollinear exchange—correlation potential, V*“, and kernel,
K*¢, will be defined in Sec. II B.

B. Noncollinear DFT functionals

In one-component (1¢) theories (nonrelativistic or scalar rel-
ativistic), spin is a good quantum number; hence, the choice of
orientation of the spin quantization axis is arbitrary. Consequently,
the spin-polarized GGA density functional theory is equivalently
parameterized either in terms of a and f spin densities, p* and pF,
or in terms of the charge and the z-component of spin density, po
and p;,

po =p e Ve = VPt VP (14)
pr=p =g Uk =Vp -V (15)

The exchange-correlation energy is then defined as

E* = f é‘xc[n:sxgnn;gs.:)gns] av, (16)

where € denotes the exchange-correlation energy density. To
ensure rotational invariance of the total energy in the framework of
1c theories, instead of using the parameters defined in Eqgs. (14) and
(15), the following set of parameters is employed,”’
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1c 1c
n-=po,
1lc 1c
S =pz>
& = Vo Vpo', (17)

g = Vp: - Vps,

g = Vo' Vpi.
However, parameterizations of the exchange-correlation energy
density that depend only on one component of the spin density are
inadequate for two- (2c) and four-component (4c) theories, since
they yield expressions that lack rotational invariance, and fail to
fully capture the SOC effects. For LDA functionals, this problem was
overcome by the substitution of the z-component of spin density by
its magnitude, p, — ||, a technique developed by van Wiillen."’
This reparameterization is referred to as the noncollinear ansatz.
Unfortunately, the direct extension of this parameterization to GGA
functionals, i.e., Vp, — V||, is known to be numerically unsta-
ble.”"** A robust solution to this problem was proposed by Scalmani
and Frisch,” leading to the following fully rotationally invariant
variables,™

n = po,
s=/pp
g = Vpo - Vpo,
&s = Vi Vpi (18)
g =foE §=Fvg
& =Vpo - Vpi
fo =sgn(g-p).

An important distinction between Eqs. (17) and (18) is that in
Eq. (17) both p, and Vpq - Vp; can have both positive and negative
values, while their counterparts, s and g in Eq. (18), are always pos-
itive. To resolve this discrepancy, a function, fy, was introduced in
the definition of a noncollinear variable, g,s. This solution is made
possible by the invariance of the exchange-correlation functionals
under interchange of « and f variables.

XC

Kxc oY
TA

~ AV
wirDn = 7= D" Dy = f {(k”" Po+ K5+ K" G + K™ oo + K™ G0 ) Qpy + (K7 Po + K5+ K5 G + K% g + K% G5 % ot
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The charge density, po, and spin density, p, variables in Eq. (18)
can be obtained using any level of relativistic theory in which the
spin-orbit interaction is included variationally. In the present work,
we consider the Dirac 4c theory

o= Tr[(XRKB)TXRKB D], (19)
p=Te[ (X**)EXx" D), (20)

where ¥ is the four-component matrix,

iy e

Development of the fully relativistic 4c-LR-KU-TDDFT method
described in this article necessitated derivation of new expressions
for the noncollinear exchange-correlation potential, V*¢, and ker-
nel, K*, which are applicable to ground states with arbitrary time-
reversal symmetry. In contrast to Ref. 35, these expressions do not

S Q
Qo

require calculation of kinetic energy densities (7 and # in Ref. 35),
instead making use of the gradient of the overlap distribution
matrix, VQ. Consequently, the exchange-correlation potential can
be expressed as’’

XC dExc n ~0 s Pk ~k Gun 0
Viw = .- f V" Quy + 07— Quy + 0™ 2Vipo Vi,
o S

k e o Sk
+ U5 2V Vi, + 0" fy gE Vipk ViQpy

+ ¥ fy % Vipo Vzﬂﬁv)dv, (22)

where auxiliary variables v' and overlap distribution matrices have
the form

Q= , Q= , =0...3, 23
“= 3D, "~ b, > 23)
'Ut = a;t > t="1n,S, gnn> gsss gns- (24)

The exchange-correlation kernel contracted with an arbitrary
matrix is written as™

uv

+ (kgnn”ﬁo +kgnr15§+ k,gmgmgm + kgnngsxgss + kgnngnsgm)ZleO vlggv + (kgss”po + kgssfg+ kgxsgnngnn + kgssgxsgss + kgxsgnsgm)Zlek VIQ[Iiv

+ (K" po + 8 5+ KO8 g+ 88 g + K88 g ) fy % (lek Vngv + Vipo Vzﬂﬁv)

s Sns \V/
+ %(pk - %s)gﬁv + 08" 2¥p0 ViQy + 0% 2Vjp; VIO, + ”g fo (gkvlfjk B Vipe - % g) v,
’Ug'” y B \v/ B
+ < fv (ngIPO + & Vipo - & gzpo g) VIQ,IEV} dv, (25)

J. Chem. Phys. 151, 184111 (2019); doi: 10.1063/1.5121713
Published under license by AIP Publishing

151, 184111-4


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

with auxiliary variables defined as

5= PRPE (26)
s

&nn = 2 Vipo Vipo, (27)
Zss = 2 Vipk Vipro (28)
G =fv ‘% -fod (29)
&k = Vipk Vipo + Vipk Vipo, (30)
pm = QfDny, m=0...3, (31)

. 9
K" = e t U =1, S, Guns Gos» Gns- (32)

For clarity, we keep k™ and k*' separate in expressions for the DFT
kernel, despite them being equal, i.e., k* = k.

Numerical instabilities referred to in this work affect GGA DFT
potentials and kernels for systems with the degenerate ground state
when rotational invariance of the exchange-correlation energy is
introduced via noncollinear ansatz. This holds for all noncollinear
ansatzes discussed in this work since they all incorporate, in one way
or another, a square root function. The derivative of a square root
function at zero is not defined, which leads to numerical problems
in regions where the spin densities or their gradients approach zero.
Although the potential and kernel derived from the noncollinear
ansatz (18) are not completely free from these problems, they are
less prominent than in a potential and kernel developed using the
parameterization Vp, — V|p|. In the latter parameterization, large
cutoff thresholds must be applied” if these instabilities are to be
avoided. In the following, we will address these issues in the frame-
work of the noncollinear ansatz (18), rigorously wherever possible
and via redefinition of the functional where not.

C.Limitcases:s=0vg=0

It was noted previously that for the choice of noncollinear
variables

Pz > S,
. . (33)
Vpz = Vs,
the resulting exchange—correlation potential and kernel are numer-
ically unstable,” " and therefore the ansatz (33) must be rejected.
We argue that this instability originates in the ill-defined derivative

of the variable, s, when s = 0. A manifestation of this ill behavior is
the nonexistence of the limit

pr(A) pe(4)
;t/l\lao:(o)»o s(1)’

(34)

s(lol)nlo}llir(l) s(A)
where A is a perturbation parameter. Issues with such limit cases
affect not only the rejected noncollinear ansatz [Eq. (33)] but also
the Scalmani and Frisch noncollinear definition [Eq. (18)] for vari-
ables s and gy, albeit in a less severe manner. In the case of LDA
functionals, which do not require evaluation of spatial gradients
of the spin density, the situation can be resolved rigorously. The
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solution was first described in the context of TDDFT theory by
Wang and Ziegler,”’ who observed that

S
V¥ st s=0, v =k™=0, and v K. (35)
s
It is possible to generalize the expression, v* = kK = 0, in the context
of GGA functionals, in which gradients of the spin density must be

considered
V7 st s=gus =0, (36)

v =0 =0, (37)

and K™ = K% = j8mS _ j8m8ns _ J8sS _ J 88 _ () (38)

This extension relies on the invariance of exchange-correlation
functionals under interchange of « and f3 variables. Unfortunately,
attempts to generalize the last term in expression (35) have proven
less successful, yielding the expressions

V7 st s=gu =0,

vS Ss .
S k™ + ill-defined, (39)

&ns

v
and =

& 4 jll-defined,

which suffer from the same ill behavior associated with the nonexis-
tence of the limit specified in (34).

Nevertheless, two distinct noncollinear DFT kernels have been
proposed: one by Bast et al.,”” in the framework of LR-TDDFT the-
ory, and another by Komorovsky et al.,” in the context of calculation
of nuclear spin-rotation constants. Both kernels were formulated for
the closed-shell limit, i.e., when the perturbation-free density matrix
is symmetric under time reversal, and thus the perturbation-free
spin density and its gradients vanish

p=0AVp=0 = s=0Agu=0. (40)

Both methods satisfy two necessary conditions of any noncollinear
DFT methodology intended for the treatment of systems with a non-
degenerate ground state. First, a form for their exchange-correlation
potential is™

Vie = f (Un.QgV+’Ug”” 2Vipo V,ng)dv, (41)

and second, their collinear limit,

p = Pz

L - (42)

VP - sz;
has the form of standard nonrelativistic DFT functionals. The valid-
ity of both methods is supported by the numerical results in Refs. 32
and 55. However, in the present work, we have found that the exten-
sion of the noncollinear kernel in Ref. 55 to the LR-TDDFT domain
gives unsatisfactory results when applied to atoms in the Zn-Hg
series and that the error in the degeneracy of the energy spectra can
be as large as 1%. Due to these observations, the present authors
suggest avoiding the use of this kernel for the calculation of energy
spectra and to reconsider its use in the calculation of magnetic
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properties. We propose the use of the kernel presented in Ref. 32 for
case (36), with a sligh‘g modification accommodating the nonequiva-
lence (46), as follows:™

V7 st $=gus =0, (43)
V;(s _ f (Un ng + ,Ugnn ZVZPO VIng + ’Ug” Zvlpk VZQ}Ijv)dV) (44)
and

K;f/,hf)ﬁ\ = [ {(knn i’() + kngnn gnn + kngss gSS)ng

+ kgm,n pO + kgnngnn gnn + kgnngss gss)ZVz,Do VIQ’?{V

+ kgssn /30 + kgssgmx gnn + kgssgss gss)ZVlPk VZQ/I:V

+ (K8 py + RS gk) (Vl,Dk VIQEW + Vipo V;Q,Ijv)

+ (ksx ,[)k + kng gk)Q;]jv
+ 2Vipo V[Qﬁv + & 2Vipk VIQ‘EV} dv. (45)

This definition reflects the fact that the implication in expression
(40) cannot be extended to the equivalence

P=0AVp=0 <> s=0Agy=0. (46)

From consideration of Egs. (36)-(39), it is apparent that under con-
dition (43), the Scalmani and Frisch noncollinear ansatz, Eq. (18),
leads to the exchange-correlation potential as specified in (44) and
recovers all terms in the kernel definition in Eq. (45), with the
exception of those containing k**. These terms are not well defined
due to the ill behavior of the limit (34); therefore, we define them

J

ARTICLE scitation.org/journalljcp

using expressions from Ref. 32 as these provide numerically stable
results consistent with experimental data. In summary, the expres-
sions (43)-(45) have the correct collinear limit, are rotationally
invariant, and are numerically stable. Crucially, they are consistent
with the noncollinear ansatz of Scalmani and Frisch in all cases in
which the expressions (22) and (25) are well defined in the limit
(s = 0 A gus = 0). Furthermore, they are equivalent, in the closed
shell limit, to the well behaved kernel of Bast et al.*
It remains to discuss two mixed cases,

V7 st s=0Agu %0, (47)
V7 st s % 0 Agns = 0. (48)

Unfortunately, both of these cases are more challenging than (36)

since Egs. (37) and (38) are not valid, and the corresponding func-
tions are, in general, nonzero. Furthermore, the expressions, % and
,Ugns . . .

“—, relevant to the calculation of the noncollinear potential and

kernel, are divergent for the first [Eq. (47)] and the second case
[Eq. (48)], respectively. To overcome this problem, the exchange-
correlation potential and kernel are defined in the collinear manner
when necessary”’

V7 st s=0Agus #0, (49)

S = pys fv =sgn(gy)» (50)
V,ff,(y) = f (v"QﬁV + USQ}iv + vg””ZvlpoVIng + vg“‘ZVzkalQ’;V
ons ¢ 8k 0 g o 8k k
tv fV E VlPk VIQ[lV + v fV E VIPO VIQ[lV dV: (51)

and

K;fﬁ J\T(y)ﬁﬂ = f { (knnf)o + knsi-)y 4 8 Gon + K8 Gt K8 gns)ng + (kmeo Tk )+ R Gon + % Gt K8 gnS)lev

b
+ (kgnnnﬁo + kgmﬁﬁy + kgnngnngnn + kgnngﬁgss + kgrmgmgns)zvlpo VIQg.v + (kgss”‘po + kgssfﬁy + kgsxgnngnn + kgﬁgﬁgss + kgsxgmgns)

X 2VipkViQy + (K" Po + KBy + K5 Gy + K8 g 4 K80 g, ) iy % (VipeVi + VipoViy, ) + v 2Vpo Vi,

F 2T PV, + ”;"S fo (ngZf)k + 5 ipr - SVP "g) Tk, + ”js fo (ngzf)o + 8Vipo - g"zlp Og)VzQﬁv}dV. (52)
V7 st s#E0A g =0, (53)

gns = Vpo - Vpy, (54)

V,)fﬁ()/) _ f (v”Qﬁv + vs%Qﬁv n vg””ZVzpoVIQZV + vgs‘ZVzkaIwa + % leyv,Qf,v + % VpoVlQ;;v)dV> (55)

and

Kiwe(y) Dy = f {(k""po + K54 K G+ K s+ K93 ) Qpy + (K Po + K75+ K5 G + K% s + k%5, Pk ok
N

uv

+ ( J8m" po + &S5 4 G Fn + J&mss Fos + K&m8ns gy) 2% POVIQ,% + ( RS o+ K855 4 Josm Bon + J8es8ss Bos + J&ss8rs gy)
X ZvlkalQ[ljv + (kgmnﬁo + kgnsS§ + kg'”g""gnn + kg"sgssgsg + kgmgmgy) (leyvlggv + VIPOVZQ[ZV)

+ %(i’k - P—Sk§)Qﬁv + " 2VPoViQ, + v 2Vip VI, + o5 (Vipy ViQ, + Vio VleV)}dV- (56)
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Evaluation of derivatives of the exchange—correlation energy den-
sity, €, in the above expressions makes use of the definitions of
noncollinear variables in (18), with the exception of those vari-
ables defined in Egs. (50) and (54). The free index, y, represents
the collinear direction obtained as the index of the maximum ele-
ment in the absolute value of the vector /pdV and /g dV in the case
of Eqgs. (49)-(56), respectively. The proposed expressions (49)-(56)
satisfy the collinear limit, are numerically stable, but are not fully
rotationally invariant.

In practical calculations, a comparison to a numerical thresh-
old, ©, is used to determine which of the cases, (43), (49), and (53),
is relevant and which set of expressions should be applied. For con-
venience, the definition of the proposed DFT potential and kernel is
summarized in Table I.

Remarks.

o The regularization threshold, ©, in Table I is part of the
definition of the noncollinear potential and kernel.

e The exchange-correlation potential and kernel in Table I
has the proper collinear limit (42), and the closed-shell limit
of well behaved kernel of Bast et al.”” Rotational invari-
ance is broken in some terms for the second and third
cases.

e In Ref. 35, UO%* is found to exhibit nonzero magnetization.
However, this system is typically thought to have a nonde-
generate ground state with a single-determinant Kramers-
restricted conﬁguration,’u‘j’(‘ *> which is in contradiction to
findings in Ref. 35 since nondegenerate states are non-
magnetic. One possible explanation is that the noncollinear
DFT kernel used in Ref. 35 based on the Scalmani and
Frisch ansatz'* does not satisfy the collinear limit. Using the
noncollinear DFT potential defined in Table I, we obtain
a Kramers-restricted wave function when starting from
the one-component closed-shell singlet Slater determinant.
When starting from a high spin triplet Slater determinant,
the SCF procedure converges to a Kramers-unrestricted
wave function; however, it has a higher energy than the
restricted one. This result is consistent with the literature,
in which the ground state of the UO3* system is considered
nondegenerate and thus nonmagnetic.

o The sign function in the definition (18) has a discontinu-
ity at zero. This leads to additional expressions involving the
Dirac delta function. For example, the exchange-correlation
potential (22) should have an additional term””

TABLE I. Summary of the expressions for noncollinear exchange—correlation poten-
tial and kernel.”

Case V7 s.t. Variables” A% K*
1 S>OAgns >0 (22) (25)
2 S>OAgns <O (54) (55) (56)
3 S<OAgGn>0 (50) (51) (52)
4 S<OAG <O s=0gu=0 (44) (45)

“Numbers in the table represent equation numbers.
"The final variable set is obtained after the data from the table is substituted in Eq. (18).
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2 f vg”‘g(?(ﬁ-gf)(ng,ﬁv‘F kazpkvln‘,iv+pkvlpov10’,§v)dv.
(57)

This issue is partially solved by redefinition of the variable
gns in cases 2-4 in Table I. The remaining, unlikely case that
vectors p and g are nonzero and perpendicular is discarded.
Similar issues involving the sign function, sgn(g,), in the
third case in Table I are also dealt with by discarding the
relevant terms.

e The noncollinear GGA exchange-correlation potential and
kernel, Table I, are formulated for the general matrix
D; hence, these expressions can be easily rewritten to
take advantage of any combination of Hermitian and
time-reversal symmetry possessed by the matrix D. For
example, Hermitian symmetry and time-reversal antisym-
metry can be utilized in relativistic methods for the cal-
culation of NMR shielding or indirect spin-spin coupling
constants.

e One of the disadvantages of the Scalmani and Frisch non-
collinear ansatz'' is the equal treatment of transverse and
longitudinal gradients of the spin density. In the work of
Eich et al,"" it was demonstrated that in the case of spin-
polarized electron gas, the transverse and longitudinal gradi-
ents have different dependence on the spin polarization, 2,
and that the Scalmani and Frisch noncollinear ansatz is only
justified either in weak spin-polarization limit or when the
system is strongly inhomogeneous (a relatively large trans-
verse component of the spin density gradient). The systems
studied in this work fall within the weak spin polarization
regime. For example, the spin polarization on the Pa-Cl
bond does not exceed 0.01. This is consistent with the obser-
vation that the spin density is largely due to a single unpaired
electron localized around the Pa atom, where the charge
density is significantly larger than the spin-density.

D. Eigenproblem solver (EPS)

Taking a direct approach to the solution of Eq. (3) is not feasi-
ble due to the large dimension of the matrix. Consequently, iterative
algorithms that only require calculation of the matrix-vector prod-
uct are utilized. A further complication is that the eigenproblem (3)
is defined over the field of complex numbers and the corresponding
matrix is non-Hermitian. In this work, we use a modified version,
the Davidson algorithm,”® which incorporates the preconditioning
described in Ref. 57 and which adds four trial vectors to the subspace
at each iteration instead of only one.

The paired structure of Eq. (3) was recognized first by Olsen
et al.,”® who noted that for each solution with eigenvalue w, there
exists a solution with eigenvalue -w, i.e.,

(304
(5 E)6)

In the version of the Davidson-Olsen algorithm proposed in the
present article, a pair of left eigenvectors of Eq. (3) is added in
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addition to the pair in Eq. (58). Due to the structure of the A and
B matrices,

AT = A, (59)
B =B, (60)

for the left eigenvector it holds that

(3 206
- (3 )03

Accordingly, in each iteration, after a new trial vector is determined,
three more trial vectors are added

- G @) () e

To increase the flexibility of the subspace, the same basis of trial
vectors is used for both sides of the eigenvalue problem. Projec-
tion to the subspace of the four new trial vectors requires only
two matrix-vector multiplications, one for the left and one for the
right trial vector, as the remaining two matrix-vector operations
for paired trial eigenvectors, Eq. (58), are determined using the

following implication:
A B \(x) (X
-B* -A*J\Y) \Y

- (X)) (3)

The modification to the Davidson-Olsen algorithm presented
above was found to be crucial in ensuring robust convergence of the
algorithm when applied to the solution of the 4c-LR-KU-TDDFT
equation (3). In the case of Kramers-unrestricted reference states,
the modification was found to be necessary to obtain any sensible
results at all. For the Kramers-restricted case, the improvement was
less pronounced, and only marginal for the calculation of the lowest
few eigenstates. However, the modification greatly improved perfor-
mance in cases requiring calculation of a large number of eigenval-
ues. For example, smooth convergence was observed in calculations
of the first 100 eigenvalues of a Cu atom. When using the PBEO
functional, this calculation required 618 matrix vector operations.

(63)

I1l. COMPUTATIONAL DETAILS

Unless stated otherwise, all calculations were performed using
the developer’s version of the RESPECT program.”’ The molec-
ular geometries of the octahedral systems, UCl; (U-Cl = 2.5 A)
and PaClé_ (Pa-Cl = 2.64 A), have been taken from Ref. 62,
where the distances have been optimized at the spin-free CASPT2
level of theory. In the four-component Dirac-Kohn-Sham calcu-
lations, the nonrelativistic DFT functionals SVWN5,” BLYP,”*"’
B3LYP,” ® PBE,"* and PBE0” ” have been employed. The
parameter involved in the definition of the noncollinear DFT
potential and kernel (see Table I) was set to ® = 10716,
The exchange-correlation nonrelativistic potential and kernel
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contributions [Egs. (24) and (32)] were calculated analytically using
the automatic differentiation technique implemented in the XCFun
library.”” Dyall’s uncontracted core-valence triple-{ basis was used
for all atoms.”" " The molecular grid used for integration of the
exchange-correlation potential and kernel has an adaptive number
of angular grid points and a fixed number of radial grid points cal-
culated as follows: Calculations of the reference wave function and
excitation energies used 40 + n * 10 and 60 + n * 10 radial grid
points, respectively, where n stands for the element’s period. The
convergence threshold for the residuum in the modified Davidson-
Olsen algorithm was set to 10™* a.u.

IV. RESULTS AND DISCUSSION

A. Atomic systems with a nondegenerate
ground state

To demonstrate the performance of the noncollinear DFT ker-
nel of Bast et al.”” and the robustness of the presented eigenvalue
solver, we examined excited state zero-field splittings of Group 3
elements Sc> —~Ac** (Table 11). A Kramers-restricted Slater determi-
nant is sufficient for description of the nondegenerate ground state
of these systems.

In all calculations, we experienced smooth convergence for all
30 roots, which corresponds to a total of 200-400 contractions of
the TDDFT kernel with a trial vector. The energetic degeneracy of
all calculated roots was reproduced with a precision of 10~°%, while
the convergence threshold for the residuum was set to 10™* a.u.

Y** and La’ have also been studied previously at the two-
component Hartree-Fock level of theory (denoted HF-X2C in
Table I1) by Egidi et al.”’ In Ref. 59, the neglected two-electron spin-
orbit effects have been partially corrected by introducing a scaling
factor for the one-electron spin—orbit integrals.”””* It was suggested
that this approximation is responsible for the discrepancy in the
zero-field splitting (ZFS) of states with high angular moment. The
largest error can be seen in the > F,—>F5 ZFS of La>* where the calcu-
lated value overestimates the experimental result by almost a factor
of two. Our calculations show that this is not correct. The agree-
ment between Dirac-Hartree-Fock (DHF) and HF-X2C results is
excellent for all splittings, with the exception of the *F,—>F; ZFS
of La’*, where a small discrepancy of approximately 2% was found.
Since our four-component results include two-electron spin-own-
orbit effects, we can conclude that scaling one-electron spin-orbit
works well for the systems studied here. The discrepancy in the ZFS
of states with high angular moment can be attributed to the miss-
ing electron correlation in the DHF and HF-X2C calculations since
the use of GGA DFT functionals considerably improves both the
mean absolute error (MAE) and the mean relative error (MRE) of
the calculated results.

Overall, the performance of the GGA DFT functionals is
acceptable, with results obtained using hybrid functionals showing
little to no improvement over those obtained using pure DFT func-
tionals. As already observed in Ref. 59, Hartree-Fock works well for
light elements (Sc®* in this study) but breaks down for heavier ones.
Note that the order of energy levels is not always predicted correctly.
In the case of Sc** calculations, no discrepancies have been found.
On the other hand, for Y**, the energies of the *P;, and *Fy levels are
swapped in calculations performed with the PBE, PBEO, BLYP, and
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TABLE Il Excited state ZFS energies of Group 3 ions Sc®*-Ac®* (in meV).
ZFS SVWN5' PBE' PBE0° BLYP® B3LYP' DHF HF-X2C" Expt.

st 3p-3p, 93 93 93 94 94 92 . 84
’p,-*py 189 190 190 191 191 186 . 175
3F;-*F, 173 181 183 182 183 190 ... 174
3F,-3Fs 163 167 167 170 169 166 .. 161
MAE? 6 9 10 11 11 10
MRE (%)° 5.1 6.8 7.0 7.8 7.8 7.0

y¥*  3p,-3p, 196 209 216 205 210 230 228 213
’p,-3p 382 415 432 404 416 469 464 430
3F3->F, 221 285 306 284 294 375 381 281
3F,->Fs 251 376 401 369 381 468 468 376
MAE! 62 6 14 11 9 60 60
MRE (%)* 18.4 1.7 44 3.2 2.7 18.7 18.8

La**  3p,-3p, 244 275 290 261 272 329 328 287
’p,-3p 450 518 555 484 511 651 651 552
3F3-*F, 81 176 217 171 191 373 372 171
3F,-Fs3 236 395 441 368 387 627 642 353
MAE! 88 23 35 27 28 154 158
MRE (%)° 29.8 6.3 13.4 6.4 8.5 57.1 57.9

At PPy 304 356 381 324 341 449
PPy 454 558 627 479 534 775
PP Fy 308 210 134 196 155 191
P F3 457 563 568 517 513 669

“Results obtained using the 4c-LR-KU-TDDFT method developed in this work.

®Data taken from Ref. 59.

“Data taken from NIST Atomic Spectra Database.”’
4Mean absolute error.

“Mean relative error.

B3LYP functionals. The same energies are swapped in La®* calcula-
tions performed with DHF and the PBE, PBEO, and B3LYP function-
als, and in the case of the BLYP functional, the energy of the 3P, level
is predicted to be greater than those of both the *F4 and *F; levels.

B. Atomic systems with a doubly degenerate
ground state

For the first test of the proposed four-component lin-
ear response Kramers-unrestricted TDDFT method, 4c-LR-KU-
TDDFT, on systems with a degenerate ground state, we choose
the calculation of the lowest excitation energies of Group 11 atoms
(Cu-Rg). Coinage-metal atoms (Cu-Au) are preferred for their rel-
atively simple ground state electron configuration, >S[(n — 1)d'%ns,
J1/2], which results in smooth convergence of the self-consistent-
field (SCF) procedure. Conversely, the ground state configuration
of the Rg atom, ID[7s*6d, Jsp), differs from those of coinage-
metal atoms, and the small HOMO-LUMO gap associated with this
configuration results in slower SCF convergence.

A distinctive feature of the proposed 4c-LR-KU-TDDFT
method is that all states within a degenerate manifold are treated
independently. For example, the first excitation energy for the

gold atom is zero since its ground state is doubly degenerate. This
behavior is observed for all coinage-metal atoms as the first excita-
tion energy is always smaller then 10™* eV. On the other hand, the
sixfold degenerate ground state of the Rg atom is reproduced only
approximately. Moreover, the reference state usually corresponds to
a higher energy, which leads to negative average values. The worst
results were those obtained with the B3LYP functional, which pre-
dicted —0.20 + 0.17 eV (see Table VI). This artificial energy splitting
is inherent to Kramers-unrestricted methods that do not take into
account the spatial symmetry of the system. This problem is not a
consequence of the DFT functional used (since it is also present in
DHEF calculations) or a consequence of the eigensolver (since the
artificial splitting is higher than the convergence threshold). In an
attempt to quantify the significance of this issue, we have calculated
the mean and standard deviation of the energy excitations for each
degenerate manifold; see Tables ITI-VII.

The DHF and DFT SCF calculations on the Rg atom predicted
different ground state configurations, 2S[7s6dw, J12] for the for-
mer and D[7526d9, Js2] for the latter. However, the 4c-LR-KU-
TDHEF calculation converged to six negative energies, indicating
that 2D[75*6d°, J51] is the correct ground state configuration. DHF
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data in Table VT are presented relative to the 2D[7526d9, J5/2] config-
uration so as to facilitate comparison with the DFT results.

The convergence and number of iterations required for each
energy level included in the calculation is found to be similar to

TABLE lll. Low-lying excited states of Cu (in eV).

ARTICLE

scitation.org/journalljcp

4c-LR-KU-TDDFT*

s£-X2C-S-TDA-SOC”

’D[3d’45°] Jsi2 J312 A© Jsi2 J312 A©
DHF 3.28(0.145) 3.77(0.070) 0.49 3.57 3.80 0.23
SVWN5 0.55(0.013) 0.83(0.010) 0.28 0.69 0.92 0.24
BLYP 0.29(0.034) 0.57(0.022) 0.28 0.47 0.71 0.23
B3LYP 0.73(0.125) 1.14(0.060) 0.41 1.05 1.29 0.23
PBE 0.53(0.005) 0.80(0.004) 027

PBEO 1.32(0.008) 1.61(0.006) 0.29 o . S
BHandHLYP - ... . 1.89 2.13 0.23
EXpt.d 1.39 1.64 0.25 1.39 1.64 0.25

*Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data in the table represent mean values for each
degenerate multiplet with the standard deviation in parentheses.

®Data taken from Ref. 34.

€A =J3, — Js12 represents splitting of 2D[3d°45?] state.
4Data taken from NIST Atomic Spectra Database.”

that seen in calculations of excitation energies of systems with a

nondegenerate ground state, Sc’*~Ac’*. In other words, the pro-

TABLE IV. Low-lying excited states of Ag (in eV).

4¢-LR-KU-TDDFT*

s£-X2C-S-TDA-SOC"

2P[4d"5p] Jin2 T3 A Ji2 VEYS Af
DHF 2.82(0.022) 3.05(0.113) 0.23 3.15 3.27 0.12
SVWN5 3.88(0.027) 4.06(0.058) 0.18 432 4.47 0.14
BLYP 2.15(2.511) 2.18(2.071) 0.03 430 4.44 0.14
B3LYP 2.68(1.579) 2.71(1.313) 0.03 4.13 427 0.14
PBE 3.64(0.024) 3.83(0.084) 0.19

PBEO 3.56(0.016) 3.68(0.031) 0.12 ... ... ...
BHandHLYP ... .. .. 3.87 401 0.14
Expt. 3.66 3.78 0.11 3.66 3.78 0.11

4¢-LR-KU-TDDFT* sf-X2C-S-TDA-SOC”

’D[4d’55%] Jsi2 J312 AF JER) VEYS A°
DHF 4.94(0.094) 5.61(0.061) 0.67 5.09 5.29 0.20
SVWN5 2.96(0.018) 3.52(0.013) 0.56 3.00 3.52 0.52
BLYP 2.76(0.039) 3.33(0.026) 0.57 2.84 3.36 0.52
B3LYP 3.17(0.070) 3.76(0.040) 0.59 3.30 3.82 0.52
PBE 2.99(0.042) 3.56(0.029) 0.57

PBEO 3.49(0.093) 4.10(0.061) 0.61 ... ... ...
BHandHLYP ... ... ... 3.93 4.44 0.51
Expt. 3.75 430 0.55 3.75 430 0.55

*Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data in the table represent mean values for each
degenerate multiplet with the standard deviation in parentheses.

®Data taken from Ref. 34.

€A =]3, — Jij2 represents splitting of 2P[4d"*5p] state.
4Data taken from NIST Atomic Spectra Database.’
€A =J3, — ]2 represents splitting of 2D[4d’55?] state.

posed EPS algorithm provides the same robust convergence for both
Kramers-restricted and unrestricted reference states.
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TABLE V. Low-lying excited states of Au (in eV).
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4c-LR-KU-TDDFT*

sf-X2C-S-TDA-SOC"

’D[5d°65"] Jsi2 J312 A© Js12 J312 A°
DHF 1.90(0.076)  3.55(0.056) 1.65 2.03 3.48 145
SVWNS5 0.62(0.042)  2.18(0.029) 1.56 0.72 2.19 1.47
BLYP 0.49(0.060) 2.03(0.040) 1.54 0.61 2.07 1.46
B3LYP 0.77(0.066) 2.33(0.044) 1.56 0.91 2.36 1.46
PBE 0.59(0.087) 2.14(0.064) 1.55

PBEO 0.99(0.068) 2.55(0.050) 1.56 . . ..
BHandHLYP .. . .. 1.32 2.77 1.45
EXp'[.d 1.14 2.66 1.52 1.14 2.66 1.52

*Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data in the table represent mean values for each

degenerate multiplet with the standard deviation in parentheses.

®Data taken from Ref. 34,
“A =J3, — ]2 represents splitting of 2D[5d°657] state.
Data taken from NIST Atomic Spectra Database."’

In Tables I11-V, we compare calculated and experimental low-
lying excitation energies of coinage-metal atoms. These data were
obtained using the 4c-LR-KU-TDDFT method developed in this
work and with the sf-X2C-S-TDA-SOC method presented in Ref. 34.
The significant difference between these two sets of data is a conse-
quence of the interplay between SOC and electron correlation. In the
4c-LR-KU-TDDFT results, there are notable differences in the pre-
diction of SO splitting, A, obtained using different DFT functionals
and DHF. On the other hand, the SO splitting is almost constant in
the sf-X2C-S-TDA-SOC results, with the exception of the & = J3/,
— Js2 splitting of Ag, for which the DHF result deviates from this
trend.

TABLE VI. Low-lying excited states of Rg (in eV).”

*D[75°6d°] Jsi2 J312 ab
DHF 0.00(0.012) 2.80(0.024) 2.80
SVWN35 0.06(0.087) 2.88(0.035) 2.82
BLYP —0.01(0.120) 2.78(0.131) 2.79
B3LYP —0.20(0.165) 2.53(0.154) 2.74
PBE —0.06(0.087) 2.76(0.091) 2.83
PBEO —0.20(0.159) 2.53(0.163) 2.73
28[756d'°] T2

DHF 2.68(0.000)

SVWN5 2.79(0.046)

BLYP 2.70(0.050)

B3LYP 2.59(0.336)

PBE 2.69(0.047)

PBEO 2.54(0.237)

*Results obtained using the 4c-LR-KU-TDDFT method developed in this work. Data
in the table represent mean values for each degenerate multiplet with the standard
deviation in parentheses.

bA = J3/2 — Js12 represents splitting of 2D[7s%6d°] state.

In Cu calculations with BLYP and B3LYP functionals, we
obtained spurious negative eigenvalues, —24.6 eV, —24.6 ¢V, and
—23.4 eV. Under normal circumstances, this would suggest that the
SCF procedure converged to some stationary point instead of the
ground state. However, these eigenvalues are unusually large and
hence clearly unphysical. Another indication that they are artificial
is that there is little difference in the structure and magnitude of PBE
and BLYP one-electron eigenspectrum. Furthermore, the PBE calcu-
lations exhibit proper behavior and yield sensible results. We have
therefore omitted these results in Table I1I and left their analysis to
a future work.

The case of the Ag atom is especially challenging since the
energy gap between states 2P[4¢71105p, J3/2] and 2D[4d9552, Js/2] is less
than 0.1 eV, as indicated by the experimental data. Both the sf-X2C-
S-TDA-SOC and 4¢c-LR-KU-TDDFT methods predict an incorrect
ordering of the states. Use of the former method with the DHF
Hamiltonian results in a large error in the SO splitting, while use
of the 4c-LR-KU-TDDFT with the BLYP and B3LYP functionals
mixes the 2P[4dlo5p] states into the 2D[4d°5s?] states, resulting in
a large artificial splitting of the degenerate manifold. By increas-
ing the threshold parameter, ®, from 107 to 107%, results for
BLYP and B3LYP functionals become 3.88(0.012)/4.01(0.008) and
3.79(0.011)/3.94(0.052) (J1/2/]3/2), respectively. Although the prob-
lem appears to be fixed, the first excitation energy becomes nonzero
(~107?), which suggests that a less ad hoc solution should be sought,
e.g., one which takes atomic symmetry into account.

Overall, the functional offering the best performance in the
4c-LR-KU-TDDFT method is PBEQ, yielding slightly better results
than the best obtained with the sf-X2C-S-TDA-SOC method and
BHandHLYP functional in the work of Li et al.” This is some-
what surprising given that the sf-X2C-S-TDA-SOC method involves
a number of approximations described above. However, as of now,
there are too little data to draw any strong conclusions regarding the
relative performance of the two methods.

C. Octahedral actinide complexes with a doubly
degenerate groundstate

As alast test, we chose three actinide complexes, PaCl?, UClg,
and NpFg, from the work of Notter and Bolvin.*” This choice was
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TABLE VII. Low-lying excited states of some actinide complexes (in cm—").

ZTZu
Gs/2u Es), A
PaCly  DHF’ 999(672) 5013(206) 4014
SVWNS5" 2810(761)  5018(284) 2208
BLYP" 2946(367)  4952(504) 2006
B3LYP" 2768(332)  5028(447) 2260
PBE" 2883(381)  5067(469) 2184
PBEO" 2643(328)  5211(377) 2568
SO-CASPT2 2190 6000 3810
Expt. 2110 5250 3140
UCly DHF" 2984(683)  6754(218) 3770
SVWN5’ 4329(647)  6327(201) 1998
BLYP" 4691(322)  6409(565) 1718
B3LYP" 4566(296)  6572(490) 2006
PBE" 4557(352)  6419(511) 1862
PBEO" 4433(333)  6706(432) 2273
SO-CASPT2* 3790 7300 3510
Expt.” 3800 6790 2990
NpFs DHF" 8297(141) 9921(45) 1624
SVWNS5" 8077(483) 9183(86) 1106
BLYP" 8871(235)  9662(429) 791
B3LYP" 8683(191)  9631(393) 948
PBE" 8618(290)  9458(398) 840
PBEO" 8458(266)  9519(374) 1061
SO-CASPT2¢ 7280 9490 2210
Expt.| 7500 9400 1900

A= E;/Zu — G324 represents splitting of the 2T, state.

PResults obtained using the 4c-LR-KU-TDDFT method developed in this work. Data
in the table represent mean values for each degenerate multiplet with the standard
deviation in parentheses.
“Data taken from Ref. 62.
“Data taken from Ref. 79.
Data taken from Ref. 80.
'Data taken from Ref. 81.

motivated by the availability of experimental data for the spin-orbit
splitting of the lowest excitation state CTa — Gyjous E; /Zu)' Fur-
thermore, these systems are essentially single determinant in char-
acter, enabling comparison of our four-component TDDFT results
with those obtained from post-Hartree-Fock methods which include
spin-orbit effects (SO-CASPT2 in this case).

In contrast to Group 11 atoms, the first excitation energy in
actinide complexes is not always well reproduced. For NpFs, UClg,
and PaClé_, the first excitation energies are always smaller than
10 cm™, 100 cm™', and 200 cm™', respectively. Although this
behavior is not ideal, it is consistent with the energy spread (quanti-
fied by the standard deviation; see Table VII) of the energy manifold
of states Gs/, and E;/zw

The convergence behavior of the EPS algorithm is in most cases
similar to previous calculations, requiring ~10 matrix-vector con-
tractions per each energy level. Deviations from this trend were
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observed in only a few cases (all of which used hybrid functionals)
where up to 20 contractions were necessary to converge one energy
level, and in all DHF calculations, where more than 30 contractions
were required. In addition, in the case of a DHF calculation of the
PaCl2™ system, the first excitation energy (~107° a.u.) was calcu-
lated to have a large imaginary component, suggesting an issue with
the reference wave function rather than merely inefficiency of the
eigenproblem solver. However, solution of this issue is left for future
studies.

Two conclusions can be drawn from the results for DFT func-
tionals in Table VIL First, among all DFT functionals, PBEQ per-
forms best when compared to experimental data. Second, all DFT
results are better for the E. /2, than the Gspy state, and errors in
the spin-orbit driven energy splitting are mostly caused by overes-
timation of the energy of the Gs2, state. Overall, the PBEO results
were comparable to those obtained using SO-CASPT? for all states,
indicating the suitability of DFT for the prediction of the energy
spectra of heavy-atom containing systems with degenerate ground
states.

V. SUMMARY AND CONCLUDING REMARKS

In this work, we have reported a method for the predic-
tion of the excitation spectra of heavy-atom containing molecules
with both nondegenerate and degenerate ground states. The pro-
posed 4c-LR-KU-TDDFT method uses a four-component Kramers-
unrestricted noncollinear DFT methodology and is therefore suit-
able for the treatment of relativistic effects, regardless of their
strength, across the periodic table of elements. This development
required two major improvements to existing relativistic TDDFT
methodologies.

First, the DFT potential and kernel resulting from the Scalmani
and Frisch noncollinear ansatz'* has been regularized so as to ensure
correct behavior in limited cases involving small spin densities and
small spin density gradients. The regularization was chosen so as to
reproduce the results obtained from nonrelativistic DFT functionals
in the closed shell limit, i.e., in cases where p — p; and ?f) — ?pz.
In the limit case where the spin density and spin density gradients
of the reference state are vanishingly small, we chose to reproduce
results obtained using the well-behaved noncollinear DFT kernel
described by Bast et al.” The proposed noncollinear DFT poten-
tial and kernel depend on an arbitrary parameter, ®, which should
be considered as part of their definition. The resulting noncollinear
methodology is applicable to both Kramers-restricted and unre-
stricted reference states, i.e., the proposed noncollinear DFT poten-
tial and kernel are suitable for states with both zero and nonzero
magnetization.

The second improvement was to the Davidson-Olsen itera-
tive subspace algorithm™” intended to solve those TDDFT eigen-
value problems for which the size of the relevant matrix prohibits
direct diagonalization. The distinguishing feature of the modifica-
tion is the use of left eigenvectors in construction of the trial sub-
space. This improvement was found to be essential to ensure the
robust convergence of the TDDFT non-Hermitian eigenproblem
for both Kramers-restricted and unrestricted reference states. The
modified algorithm has enabled calculations of up to the first 100
eigenvalues.
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We have demonstrated the capability of the presented method
to calculate vertical excitation energies of systems with nonde-
generate ground states, Sc>*~Ac®*, and doubly degenerate ground
states, Cu-Rg, PaClé_, UClg, and NpFg. Overall, the presented
4c-LR-KU-TDDFT method yields the best results when used in
conjunction with the PBEO functional. The performance of the
4c-LR-KU-TDDFT method presented here suggests the suitability
of DFT for prediction of energy spectra of heavy-atom containing
systems with both nondegenerate and doubly degenerate ground
states.
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