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Abstract

We report the first implementation of real-time time-dependent density functional

theory (RT-TDDFT) at the relativistic four-component level of theory. In contrast to

the perturbative linear-response TDDFT approach (LR-TDDFT), the RT-TDDFT ap-

proach performs an explicit time propagation of the Dirac–Kohn–Sham density matrix,

offering the possibility to simulate molecular spectroscopies involving strong electro-

magnetic fields while at the same time treating relativistic scalar and spin–orbit cor-

rections variationally. The implementation is based on the matrix representation of the
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Dirac–Coulomb Hamiltonian in the basis of restricted kinetically balanced Gaussian-

type functions, exploiting the non-collinear Kramers unrestricted formalism imple-

mented in the program ReSpect. We also present an analytic form for the delta-type

impulse commonly used in RT-TDDFT calculations as well as a dipole-weighted tran-

sition matrix analysis facilitating the interpretation of spectral transitions in terms of

ground-state molecular orbitals. The possibilities offered by the methodology are illus-

trated by investigating vertical excitation energies and oscillator strengths for ground-

to excited-state transitions in the group 12 atoms and in heavy-element hydrides. The

accuracy of the method is assessed by comparing the excitation energies obtained with

earlier relativistic linear response TDDFT results and available experimental data.

1 Introduction

The response of molecular systems to external fields forms the basis for a vast number of

molecular spectroscopic parameters that can be accurately modelled in the weak-field limit

using the tools of quantum chemistry.1 In this limit the applied fields typically induce only

a small perturbation of the molecular ground state, and thus approaches based on response

theory provide an adequate theoretical foundation for calculating many spectroscopic param-

eters.1 An interesting example is linear response time-dependent density functional theory

(LR-TDDFT) which has become the most prominent quantum chemistry method for the

calculation of electronic excitation energies of atoms and molecules.2–5

In general, however, approaches based on response theory are insufficient to study molec-

ular systems in strong fields. For instance, recent advances in experimental ultrafast spec-

troscopy have made it possible to obtain spectral information about numerous chemical

processes at the femto- and atto-second time scale, usign high-intensity laser pulses with

wavelengths ranging from the far infrared to the far ultraviolet region.6 In this case, the

fundamental physics of light–matter interactions has revealed fast non-equilibrium dynam-

ics of electrons (and nuclei), and accurate theoretical modeling of such processes requires
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non-linear time-resolved methods. Among explicit time-propagation approaches, real-time

time-dependent density functional theory (RT-TDDFT) has gained popularity due to its

favorable trade-off between computational cost and accuracy, which has stimulated an in-

terest in ultrafast structural dynamic simulations.7–27 The only added computational and

implementational effort associated with the real-time TDDFT approach is the development

of an accurate and stable time propagator and the explicit formation of the Fock matrix at

each time step. This complication is however compensated by several advantageous features

of RT-TDDFT method such as a reduced asymptotic scaling behavior of the algorithm,

the absence of explicit exchange-correlation kernel derivatives,28 the absence of divergence

problems appearing in response theory at resonant frequencies, and the implementational

simplicity, involving essentially only routines for ground-state density optimization.

In recent years, several non-relativistic implementations of real-time TDDFT have been

reported in literature. Most of the implementations follow the pioneering works of Theil-

haber,7 and Yabana and Bertsch,8 and utilize a real-space grid methodology.9 Among al-

ternative techniques, the numerical basis sets accompanied with pseudopotentials for core-

electrons,10 as well as analytic atom-centered Gaussian basis functions11–14 have gained pop-

ularity in recent years. The real-time TDDFT approach has been used in numerous ap-

plications to study, for instance, linear14–17 and non-linear optical response properties,18–21

molecular conductance,22 singlet–triplet transitions,23 magnetic circular dichroism,24 core

excitations,13,25 photoinduced electric currents,26 and plasmon resonances.27

For systems containing heavy elements, however, reliable theoretical models should ac-

count for relativistic corrections, of which the most important contribution for excitation en-

ergies is the spin–orbit coupling. Therefore, a rigorous starting point for the development of

relativistic TDDFT is the four-component formalism based on the Dirac Hamiltonian. Such

a development has recently been materialized in the linear-response TDDFT (LR-TDDFT)

implementation by Gao and coworkers.29 The original approach has later been improved by

using a non-collinear form for the exchange–correlation kernel,30 and extended further by
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Bast et al.31 to hybrid GGA functionals with a rigorous analytic expression for the exchange–

correlation kernels. In the present work, however, we have examined an alternative route to

model electronic excitation processes in molecular systems containing heavy elements, such

that the four-component Dirac–Kohn–Sham equation will be solved directly in the real-time

domain. We employ the matrix representation of the Dirac–Coulomb Hamiltonian using

a time-independent basis of restricted kinetically balanced Gaussian-type functions. This

is the first implementation and application of the four-component RT-TDDFT to atomic

and molecular systems. The present relativistic RT-TDDFT formalism offers, in contrast

to the linear-response TDDFT approach, also the possibility to simulate a wide range of

spectroscopic techniques involving strong electromagnetic fields, variationally including the

electron-spin degrees of freedom as well as relativistic scalar and spin–orbit corrections. The

importance of the present formalism has been examined for hydrogenlike systems by Selstø

et al.,32 and in the perspective of relativistic quantum chemistry recently reviewed by Bel-

passi et al..33 The present methodology is particularly desirable because it represents an

important step forward towards the understanding of relativistic and spin-dynamic effects in

optical properties, high-harmonic generation, and molecular electronic transport properties.

The remainder of the article is organized as follows: In Section 2.1, we review basic

RT-TDSCF methodology, both at Hartree–Fock (RT-TDHF) and density functional level

of theory (RT-TDDFT), focusing on the structure of the four-component time-dependent

Fock matrix. Computational details are given in Section 3 and the possibilities offered by

the methodology are illustrated in Section 4 by calculations of excited-state transitions for

the group 12 atoms and heavy-element hydrides. Concluding remarks and perspectives are

drawn in Section 5.
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2 Theory

In this section, we present the theoretical foundation for our implementation of the four-

component relativistic RT-TDSCF methodology based on Hartree–Fock (RT-TDHF) and

density functional theory (RT-TDDFT). Unless otherwise specified, atomic units are used

throughout the paper. We first discuss the basic equations for the RT-TDSCF theory in

Section 2.1, before we discuss in more detail the approach for integrating the RT-TDSCF

equation in Section 2.2. Section 2.3 discusses how electron absorption spectra can be ob-

tained from the RT-TDSCF calculations. In Section 2.4, we present a way to introduce an

analytic, instead of numerical, expression for δ-function type perturbations, before we finally

in Section 2.5 present a scheme for analysing the excited-state transitions.

2.1 Real-time time-dependent self-consistent field (RT-TDSCF)

method

The starting point for RT-TDSCF methods such as Hartree-Fock (RT-TDHF) and density

functional theory (RT-TDDFT) is the Liouville–von Neumann equation. In an orthonormal

basis, the Liouville–von Neumann equation has in the formulation using the one-electron

reduced density matrix the form34

i
∂DMO(t)

∂t
=
[
FMO(t),DMO(t)

]
, (1)

where t is the time variable, i is the imaginary unit, and [A,B] = AB − BA denotes the

commutator between two matrices A and B. In Eq. (1), FMO(t) is the time-dependent Fock

matrix and DMO(t) the one-particle reduced density matrix. The Fock and density matrices

are expressed in an orthonormal basis and can be either non-relativistic or relativistic. In our

implementation, we use the reference molecular orbitals (MO) obtained from the solution

of the static (time-independent) self-consistent field (SCF) equation. In contrast to LR-
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TDDFT for excited states,2–5 we solve Eq. (1) explicitly in the time domain by propagating

the density matrix in time.

At the initial time t0 = 0, both the optimized Fock and density matrices have a well-

defined diagonal form

DMO
0 ≡ DMO(t=0) =

1oo 0ov

0vo 0vv

 ; FMO
0 ≡ FMO(t=0) =


ε1 · · · 0

...
. . .

...

0 · · · εn

 , (2)

where for a single-particle basis of size n, {ε} is the set of n unperturbed molecular orbital

energies, and 1oo is the identity matrix of dimension N × N associated with the occupied

(o) one-particle states of an N -electron system. The remaining blocks of DMO
0 consist of

zero matrices, where the dimension v refers to the number of virtual orbitals. In the case

of relativistic four-component theory, the reference to the virtual space also includes all

negative-energy eigenstates of the Dirac–Fock operator.

Within a finite time window, the solution of the Liouville–von Neumann equation Eq. (1)

reduces to the evaluation of the time-dependent Fock matrix at discrete time-steps, and

to propagating the density matrix in time. A detailed discussion on the density matrix

propagation is left for Section 2.2. Here, we only briefly outline the main features of the Fock

matrix calculation, which is initially evaluated in the basis of the static (time-independent)

atomic orbitals (AO) by means of an integral-direct algorithm and subsequently transfered

to the reference MO basis. At each time t, the Fock matrix remains Hermitian and can be

written in the formalism suitable for Hartree–Fock and Kohn–Sham theory as

FAO(t) = h + G[α,DAO(t)] + VXC[(1− α), ρ(t)] + Vext(t). (3)

Here, h is the matrix representation of the time-independent one-electron Hamiltonian, and

G is the two-electron interaction matrix. The scalar coefficient α weights the admixture
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of the Hartree–Fock exchange contribution with the DFT exchange-correlation potential

matrix VXC, giving rise to pure TDHF (α = 1), pure TDDFT (α = 0), or hybrid schemes

(0 < α < 1). The time-dependent external potential Vext(t) accounts for the interaction

of the molecular system with an applied external electric field. Within a dipolar coupling

approximation, the wavelength of the incoming photons is assumed to be much larger than

the system size, and then the perturbation potential has a simple form of the electric dipole

operator, details of which will be discussed in Section 2.3. To solve Eq. (1), the Fock matrix

is transformed from an AO basis to the reference MO basis at each time-step using the

reference MO expansion coefficients C

FMO(t) = C†FAO(t)C. (4)

The same coefficients are also used for the evaluation of AO density matrix in Eq. (3)

DAO(t) = CDMO(t)C†. (5)

A novel feature of the present RT-TDSCF implementation is the use of full four-component

relativistic formalism based on the Dirac–Coulomb Hamiltonian for the calculation of ex-

citation energies. The approach takes into account both scalar and spin-same-orbit inter-

actions variationally, probing finer details in the absorption spectra caused by relativistic

effects. This formalism extends the applicability of RT-TDSCF to molecular systems with

significant relativistic effects. All those benefits comes, however, at the expense of higher

computational cost and complexity, primarily due to the need for evaluating integrals over

two distinct sets of basis functions, {χ} = {χL, χS}. Each of the so-called large {χL} and

small component {χS} basis sets consists of two-component spinors, governed to lowest order

in c−2 (c being the speed of light) by the restricted kinetically balanced relation (RKB):35

{χS} = {(σσσ ·p)χL}, where σσσ is the vector of three Pauli spin matrices. Obvious complications

arise from the presence of momentum operator, p = −i∇∇∇ in the expression for the small-
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component basis functions. In particular, the evaluation of electron repulsion integrals (ERI)

over the basis functions is the source of most difficulties in the four-component electronic

structure theory, especially when compared with methods based on one- or two-component

Hamiltonians. We will here take advantage of our recent developments methods suited for

the efficient evaluation of relativistic two-electron integrals.36

We will in the following assume that all terms in Eq. (3) arise from the relativistic

four-component theory based on the Dirac–Coulomb Hamiltonian. For simplicity, these con-

tributions will be presented in a more compact two-by-two representation where L and S

superscripts denote the large- and small-component, respectively. h is then the matrix rep-

resentation of the time-independent one-electron Dirac Hamiltonian in the field of clamped

nuclei

h =

VNe cT

cT WNe − 2c2T

 , (6)

where T is the kinetic energy matrix, c is the speed of light, and VNe (WNe) is the nuclear–

electron attraction matrix over the large- (small-)component basis.37 In contrast to the

one-electron part, there is no closed relativistic expression for the two-electron interaction.

Instead, a perturbation expansion in c−2 is used to identify the leading-order two-electron rel-

ativistic contribution, known as the frequency-independent Breit interaction. Even though,

the Breit interaction may be included in the zeroth-order Hamiltonian variationally,38 the

fast evaluation of two-electron integrals over the resulting Coulomb–Breit Hamiltonian still

represents a challenging task. It is also well known that the lost of accuracy associated

with the use of approximate DFT functionals is larger than the effect of neglected the Breit

interaction. It is therefore common in modern relativistic quantum chemistry to take into

account only the leading-order Coulomb Hamiltonian, 1/r12, and to represent the electron-

electron interaction matrix G by the instantaneous Coulomb interaction matrix J and the
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Hartree–Fock exchange matrix K,39

G(α) = J− αK =

JLL 02×2

02×2 JSS

− α
KLL KLS

KSL KSS

 . (7)

The remaining contribution in Eq. (3), VXC, arises from DFT and accounts for the non-

classical effects of exchange and correlation. In relativistic TDDFT, this term typically

accommodates two approximations: The first is the adiabatic approximation, where the

dependence of the exchange–correlation functional on the densities at all times in the past

is approximated by the ground-state form of the functional, i.e.

VXC[ρ,∇∇∇ρ](rrr, t) ≈ VXC[ρt,∇∇∇ρt](rrr)
∣∣
ρt=ρ(rrr,t)

. (8)

In this case, the time-dependence of functionals is only implicit via the electron density,

ρ(t), and gradients of the density. The second approximation is the use of a non-relativistic

exchange–correlation functionals, as there are no exchange–correlation functionals explicitly

designed for relativistic calculations.40 Here, it is important to note that the rotational

invariance of non-relativistic spin-density functionals is not automatically preserved in a

relativistic formalism. To circumvent this problem, we take advantage of the non-collinear

approach proposed by van Wüllen.41

2.2 Integration of the RT-TDSCF equation

The solution of the Liouville–von Neumann equation Eq. (1) can in its most general form

be written as42

D(t) = U(t, t0) D(t0) U†(t, t0), (9)
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where U(t, t0) is the unitary evolution operator propagating the density matrix from time t0

to time t. The evolution operator can be formally expressed as

U(t, t0) = T exp

[
−i
∫ t

t0

F(τ)dτ

]
, (10)

where the exponential form of the operator is defined by its Taylor series. The time ordering

operator T indicates that all expansion terms in the exponent are time-ordered:42

T exp

[
−i
∫ t

t0

F(τ)dτ

]
=
∞∑
n=0

(−i)n

n!

∫ t

t0

dτ1

∫ t

t0

dτ2 . . .

∫ t

t0

dτn×T [F(τ1)F(τ2) . . .F(τn)]. (11)

The time ordering is necessary because the Fock operator depends on time, both explicitly

and implicitly, and therefore does not commute with itself when expressed at different times.

The time dependence of the Fock operator persists in the RT-TDSCF formalism even in the

absence of an external time-dependent field, since the Fock operator depends on time through

the molecular orbitals (see Eq. (3)). This fact puts demands on the propagation scheme:

the time ordering has to be accounted for. There are two classes of propagators, global

and local.43 Global propagators such as the Taylor, Chebychev or Lanczos methods43,44 are

intended to propagate the system between two arbitrary times t0 and t and as such can

only be used for equations with time-independent operator (Hamiltonian). In the context

of RT-TDSCF method (or more generally non-linear problems) the global propagators can

only be used to propagate the system between two times that differ by a very small time

step ∆t.44 The whole time interval is then expressed as a series of local propagations defined

by this small time step. Alternatively, one can use specially designed local propagators such

as the Crank-Nichloson method, Runge-Kutta or the Magnus method.44 The latter has been

chosen for our implementation and is discussed in the next paragraphs. For more details on

methods for propagating the electron density in time, we refer to recent reviews.43–45

A good propagation method should preserve the time-reversal symmetry of the original

equation of motion, as well as the unitarity of the evolution operator. The latter condition
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is essential for preserving the time-reversal symmetry, trace and idempotency conditions of

the density matrix. It is important to remark here that the time-reversal invariance would

break in the presence of magnetic interactions. These demands are satisfied by the Magnus

expansion46 based propagator for numerically solving the TDSCF equation of motion (1).

In this approach, the evolution operator (10) is written as an infinite series, thus avoiding

the use of the time ordering operator

U(t, t0) = exp [A1(t, t0) + A2(t, t0) + . . .] , (12)

where the first three terms are defined as

A1(t, t0) ≡− i
∫ t

t0

dτF(τ), (13)

A2(t, t0) ≡− 1

2
(−i)2

∫ t

t0

dτ2

∫ τ2

t0

dτ1

[
F(τ1),F(τ2)

]
, (14)

A3(t, t0) ≡− 1

6
(−i)3

∫ t

t0

dτ3

∫ τ3

t0

dτ2

∫ τ2

t0

dτ1

[
[F(τ1),

[
F(τ2),F(τ3)

]]
+
[
[
[
F(τ1),F(τ2)

]
,F(τ3)

]
.

(15)

For short time intervals, the evolution operator can be approximated by truncating the ex-

pansion (12)44 and the integrals can be evaluated using numerical quadrature. For example,

the mid-point rule for the first term in Eq. (13) gives

U(t+ ∆t, t) ≈ exp
[
A1(t+ ∆t, t)

]
≈ exp

[
−iF

(
t+

∆t

2

)
·∆t

]
. (16)

The mid-point rule is a second-order method (the error being proportional to ∆t3), and the

approach is therefore often referred to as the second-order mid-point Magnus propagator.14,44

By restricting instead the evolution operator to the first two terms of the Magnus expansion

U(t+∆t, t) ≈ exp[A1(t+∆t, t)+A2(t+∆t, t)] we obtain the fourth-order Magnus method.44

However, it has been shown that unless there is a strong time dependence in the Hamiltonian,
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e.g. from a rapidly oscillating external field, the second-order Magnus method can be used

to obtain accurate results.44

In the second-order mid-point Magnus propagator approach, the density matrix is up-

dated using

DMO(t+ ∆t) = U(t+ ∆t, t) DMO(t) U†(t+ ∆t, t), (17)

where the evolution operator is calculated using the Fock matrix [see Eq. (16)]. This requires

the calculation of the Fock matrix at time t + ∆t/2 where no density matrix is available.

The mid-point Fock matrix can be obtained by an extrapolation from F(t), although this

may have a negative effect on the accuracy of the calculations (the same problem arises in

the beginning of the calculation when only the density matrix at time t = 0 is known). One

possibility to improve the accuracy is to use a predictor–corrector algorithm (see for example

Ref.22). To solve this issue, we employ an iterative series of extrapolations and interpolations

in each time step.25,44 In this method, as a first step, the mid-point Fock matrix is obtained

by extrapolating the data from the previous time step

F

(
t+

∆t

2

)
= 2F(t)− F

(
t− ∆t

2

)
. (18)

The density matrix D(t+∆t) and the corresponding Fock matrix F(t+∆t) are then calculated

using Eq. (17). Finally the mid-point Fock matrix is constructed by interpolation

F

(
t+

∆t

2

)
=

1

2
F(t) +

1

2
F(t+ ∆t), (19)

and thus closing the iteration cycle. The calculation of the D(t+∆t) and F(t+∆t) matrices

and the interpolation step are repeated until convergence is reached. An example of the

convergence criterion chosen in our implementation is the Euclidean norm of the difference

between density matrices obtained in the n-th and (n+ 1)-st iteration that has to be lower

than some predefined threshold.
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2.3 Electron absorption spectra from RT-TDSCF

To obtain excitation energies and absorption spectra from real-time simulations, the molec-

ular system is perturbed by applying an external time-dependent electric field εεε(rrr, t). In our

case, we study molecular systems that are small compared to wavelengths of the incoming

light. Therefore, we can assume the dipole approximation in which the interaction potential

in Eq. (3) takes the form

Vext(t) = −
∑

α=x,y,z

Pαεα(t), (20)

where Pα is the matrix representation of the electric dipole moment operator, −rα. The

importance of contributions beyond the dipole approximation was recently investigated by

Bernadotte et al.47 and found to be small even for energies of the incoming photons being

in relevant ranges for X-ray spectroscopy. Finally, an infinitely narrow impulse was chosen

for εα(t) in Eq. (20),

εα(t) = κδ(t)nα, (21)

where κ is the strength of the applied field, nα is a unit vector representing the orienta-

tion of the field, and δ(t) is the Dirac delta function. Although such a narrow impulse is

non-physical, it modulates all frequencies (energies) equally and excites the system into all

states simultaneously. An alternative approach is to use a harmonic function with a specific

frequency,18,21,23 which can also be enveloped with a Gaussian function.14,22 Such harmonic

perturbations may be used for studying a particular excitation (or a small set of excitations).

From a single real-time simulation with the electric field applied along a direction β ∈

{x, y, z}, three Cartesian components of the induced electric dipole moment are obtained

using

µind
αβ (t) = Tr

[
PαD

MO
β (t)

]
− µstatic

α ; α ∈ {x, y, z}. (22)

Here, µstatic
α = Tr

[
PαD

MO
0

]
is the static dipole moment, and DMO

β (t) is the time-evolved

density matrix (see Section 2.2). In the most general case, we need to perform three distinct

13



simulations for each of the Cartesian direction β, although the total number of simulations

can be reduced for symmetric molecules. The field-dependent dynamical dipole polarizability

tensor ααα(ω) is then calculated from the Fourier transformed induced dipole moments µµµind(ω)

as

ααβ(ω) =
1

κ
µind
αβ (ω), (23)

and the final absorption spectrum (the dipole strength function) S(ω) is obtained as

S(ω) =
4πω

3c
Im Tr [ααα(ω)] . (24)

It is important to note that due to the non-perturbative formalism of RT-TDDFT, the

dynamical dipole polarizability tensor depends on the external field and it can also contain

higher-order responses (hyperpolarizabilities). In the present work, however, the results were

evaluated for very small field strengths κ, for which the higher-order contamination disap-

pears, and the dynamical polarizability reduces to the regular leading-order contribution.

However, as shown by Ding et al.,21 it is possible to extract frequency-dependent hyperpo-

larizabilities from the real-time simulations by using a finite-field method (a series of short

simulations using monochromatic pulses).

In the limit of an infinite simulation time and infinitely small time steps, the Fourier

transformation of the dipole moments results in a sum of Dirac delta-function peaks. Such

simulations are, however, not achievable in practice. In order to partially rectify these limita-

tions, and to ensure that all oscillations vanish before the simulation is stopped, we multiply

the time-dependent dipole moment with a damping factor e−γt before we transform it to the

frequency domain. This introduces finite and identical lifetimes for all excited states, and

the resulting spectra will display Lorentzian-shaped lines instead of delta-function-shaped

lines. Note that this damping of the dipole moments is artificial and has no connection to the

true lifetimes of the excited states. This would require the inclusion of different dissipation

mechanisms in the Hamiltonian.
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2.4 Analytic form for δ-function type perturbations

In order to evaluate the perturbation part of the Fock operator in Eq. (21), a numerical

representation of the delta function must be chosen. One possibility is to use a rectangular

representation. This will, however, lead to an improper description of higher frequencies

in the final spectra due to the discontinuity at the edges of the rectangle. A smoother

representation can be obtained by using a Gaussian function.14,25

In this work we use an alternative approach. We exploit the localized nature of the

delta function, and split the task into two parts: First the ground-state density matrix is

perturbed, and then it is propagated in time using only the unperturbed part of the Fock

operator. The density matrix can be perturbed analytically, avoiding the need to find a

numerical representation of δ(t). This contrasts with an approach in which the perturbation

is considered as part of the time evolution, i.e. in which the ground-state density matrix is

propagated using the perturbed Fock operator.

To justify the perturb-and-propagate scheme, we consider the following property of the

evolution operator

U(t′′, t) = U(t′′, t′) U(t′, t), (25)

which follows from the definition of U(t, t′) in Eq. (9). It allows us to study the propagation

of the density matrix in an infinitely small time interval 〈0−, 0+〉.

To express the perturbed density matrix, let us split the Fock matrix

F(t) = F0(t) + P̃δ(t), (26)

where F0(t) is the perturbation-independent part, and P̃ is an arbitrary hermitian one-

electron operator (in our case P̃ = −κP). The following relations hold for the evolution
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operator and the perturbed density matrix [DMO
0 is defined in Eq. (2)]

U(0+, 0−) = e−iP̃, (27)

D(0+) = e−iP̃DMO
0 eiP̃. (28)

The proof of these relations, can be found in the Appendix.

2.5 Analysis of spectral transitions

In addition to the dipole moment, other time-dependent properties can be Fourier trans-

formed to extract valuable electronic structure information from the real-time simulations.

To reveal the nature of the electronic excitations in absorption spectra, we introduce in this

section a dipole-weighted transition matrix analysis. The analysis is based on viewing the

dipole strength function in Eq. (24) as a sum of ground-state molecular orbital pair con-

tributions, which provides valuable insight into the intensity of individual spectral lines in

terms of occupied–virtual MO pairs.

It is important to note that a Fourier component T (ω0) of a time-domain signal T (t)

corresponding to a resonance frequency ω0

T (ω0) =

∫ ∞
−∞

T (t)e−iω0td t, (29)

contains information about a spectral line centered at this frequency. In our analysis, we use

as the time-domain signal T (t) the induced dipole moments in Eq. (22). Unlike Eq. (22),

however, the induced dipole moments associated with the individual occupied(i)–virtual(a)

pairs of molecular orbitals are not summated, but rather treated separately, such that

µind
ai (t) = PiaDai(t) + PaiDia(t). (30)

Here, we omit the Cartesian index for clarity. Using Eq. (29) to evaluate the Fourier com-
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ponent of µind
ai (t) at a specific resonance frequency, one can identify the contribution of

individual occupied-virtual orbital pairs to the signal in the absorption spectra. In practice,

one needs to select only a small set of occupied and virtual orbitals to reveal the nature of

electronic excitations, as it will be illustrated in Section 4.

3 Computational details

The relativistic four-component RT-TDDFT method described in the previous section has

been implemented in the ReSpect quantum chemistry program48 and used for the calculation

of absorption spectra of the group 12 atoms and the heavy-element hydrides (TlH, AuH).

In the later case, the experimental ground-state equilibrium geometries (rTl−H = 1.8702 Å,

rAu−H = 1.52385 Å) were used.49 All results have been obtained with the Dirac–Coulomb

Hamiltonian and non-relativistic adiabatic DFT functionals of LDA type (SVWN(5)),50,51

GGA type (BLYP),52,53 and hybrid type (B3LYP).53,54 The DFT contributions were eval-

uated numerically on an adaptive molecular grid (program default) and their rotational in-

variance was preserved by means of a non-collinear approach with the spin density described

by the norm of the spin magnetization vector.41 The molecular grid is a superposition of

atomic grids, each consisting of 50 radial grid points and Lebedev’s quadrature grid points

of an adaptive size in the angular part, as formulated in Ref.[55]. In all calculations, we used

for the large component the uncontracted all-electron VDZ basis sets of Dyall,56–58 whereas

the small-component basis was generated on-the-fly imposing the restricted kinetically bal-

anced (RKB) relation.35 For all nuclei, a finite-sized Gaussian model was used.59 In order

to reduce the cost of the dominant computational part, the evaluation of the two-electron

contributions to the Fock matrix, we used an atom-pair approximation in the small-small

block where the evaluation of four-center two-electron integrals over atom-centered small-

component basis functions {χS} was discarded unless bra- and ket-basis pairs shared the

same origin, i.e. [χSAχ
S
B|χSCχSD]δABδCD where δ is the Kronecker delta and A, B, C, D refer
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to the origin of basis functions. This approximation typically yields small errors in the total

energy (¡ 10−5Eh) and speeds up the evaluation of the Fock matrix by a factor 2-3.

The theoretical modelling of optical absorption spectra by the RT-TDDFT approach

as implemented in our program proceeds in two steps: initially, the SCF solutions of the

time-independent Dirac–Kohn–Sham (DKS) equation are sought to obtain a ground-state

one-electron density. In the second step, the real-time time-dependent DKS equation is

solved using the second-order mid-point Magnus method with an analytic perturbation ap-

plied at time zero; see Sections 2.2 and 2.4 for more details. The convergence of the SCF step

was controlled by the norm of the DIIS vector with a threshold of 10−8, whereas the accu-

racy of the Magnus solver was controlled by an iterative extrapolation-interpolation scheme

(Eqs. (18) and (19)) with the convergence criterion |D(n)(t+ ∆t)−D(n+1)(t+ ∆t)| < 10−6.

The use of this iterative extrapolation–interpolation scheme proved important in order to

ensure the stability of the results obtained using the second-order mid-point Magnus prop-

agator. Without this scheme, instabilities were observed, manifested either by a loss of

energy conservation or by a large induced dipole moment even in the absence of external

fields. The final absorption spectra were obtained from a Fourier transform of the induced

dipole moments as described in Section 2.3, and the area under the spectral functions was

normalized to unity (hence arbitrary units for intensities). All figures presented were plotted

using Python’s matplotlib library.60

4 Results and discussion

In this section, we apply our relativistic four-component implementation of RT-TDDFT

to the calculation of vertical excitation energies of two closed-shell benchmark sets: the

group 12 atoms (Zn, Cd, Hg) and the heavy-atom hydrides AuH and TlH. The goal is

to validate the new methodology by comparing the RT-TDDFT results with experimental

values and recent theoretical results obtained from relativistic two- and four-component
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TDDFT calculations. Despite the fact the RT-TDDFT approach inherently contains non-

linear effects, these features are not manifested in the results presented here due to weak

electric field perturbations applied.

4.1 Excitation energies in Group 12 atoms (Zn, Cd, Hg)

The group 12 atoms Zn, Cd and Hg represent a series of closed-shell systems that have

received much attention, experimentally as well as theoretically, due to the fine-structure

splitting of the excited states. The most up-to-date collection of the atomic spectral lines

observed experimentally has been tabulated by Sansonetti and Martin.61 There have also

been several theoretical studies of these atomic systems using LR-TDDFT, both at the

four-component30,31 and the two-component62–66 relativistic level of theory.

The absorption spectra of the group 12 atoms were obtained from four-component RT-

TDDFT simulations in which the electronic ground state with an ns2 configuration was

perturbed by an analytic δ-function pulse with strength κ = 0.0005 au (see Eq. (21)). The

perturbed state was evolved for 30000 time steps of length 0.2 au, which corresponds to

total simulation time of 145 fs and leads to an energy (frequency) resolution of ±0.0285 eV

in the calculated spectrum. During the time evolution, the induced dipole moments were

evaluated on-the-fly and Fourier transformed from time to frequency domain at the end of

the simulations to yield the final absorption spectrum, as illustrated in Figure 1.

The two lowest electronic excitations for the group 12 atoms correspond to the ”spin-

forbidden” 1S0 →3 P1 and ”spin-allowed” 1S0 →1 P1 transitions and can be easily assigned

based on the relative intensities. More interestingly, all theoretical works based on the linear-

response TDDFT30,31,62,63,65,66 also report states not present in our RT-TDDFT simulations,

for instance, the triplet 3P2 and 3P0 states coming from the splitting of the virtual np or-

bitals due to spin–orbit coupling. In order to rationalize this difference, we note that in

the LR-TDDFT calculations, the excited state energies are obtained as poles of the linear

response functions. As such, all singly excited states can be determined by this method, in-
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dependent of the transition probability. The transition probabilities can instead be obtained

as residues of the linear response function. In contrasts, with a dipole perturbation only, the

RT-TDDFT approach will only be able to access states with a non-vanishing dipole transi-

tion moment, and thus to some extent only address the states observable in a conventional

absorption spectrum. Once transformed to the frequency domain, transitions to excited

states with low or zero transition moments will not be observed in our calculations and we

therefore observe fewer energy levels than in earlier LR-TDDFT works. The two lines in the

RT-TDDFT absorption spectra agrees however very well with the experimentally observed

persistent lines,61 as well as with the selection rule that within the dipole approximation

allows transitions between states with ∆J = 0,±1 except for the transition from J = 0 to

J = 0, J being the total angular momentum of the electronic state.

In Table 1, we have collected the electronic excitation energies associated with the lowest

ns2 → ns1np1 transitions in the Zn, Cd, and Hg atoms together with available literature

data. An interesting observation from Table 1 is that for the singlet-excited states, LDA

provides in general results in very good agreement with experimental data. In contrast, LDA

provides rather poor results for the triplet states, and exact exchange appears mandatory

in order to provide good excitation energies for the triplet-excited state. Improvements are

observed for BLYP compared to LDA for the triplet state, but the agreement with experiment

is nevertheless significantly better for the B3LYP functional. We observe that our results

in general are in excellent agreement with earlier theoretical results, and in particular with

the results obtained by Bast et al.,31 Wang et al.,62 and Kühn et al.,66 suggesting that the

computational levels in these studies are equally sufficient for the considered molecules. We

recall that the main differences between our data and those of earlier theoretical studies lies

in the choice of the one-electron basis set. The good agreement with previous theoretical

studies provides a confirmation of the correctness of our implementation and the quality of

our computational results.
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Figure 1: Time evolution of the dipole moment of mercury atom after the application of
δ-type pulse (left) and the absorption spectrum with a notable singlet–triplet transition
obtained after Fourier transform (right). Four-component real-time TDDFT (RT-TDDFT)
computations.

Fourier 
transform
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Table 1: Calculated ns2 → ns1np1 excitation energies of group 12 atoms (n = 4 − 6 for
Zn, Cd, Hg) (in eV). The present 4-component real-time TDDFT (RT-TDDFT) results are
compared with the recent relativistic linear response TDDFT (LR-TDDFT) calculations and
experimental data.

Atom DFT State Excitation energy

RT-TDDFT LR-TDDFT Exp.61

This work Gaoa Bastb Wangc Nakatad Kühne

Zn LDA 1P1 5.84 6.07 5.76 5.76 6.20 5.80

BLYP 1P1 5.78 5.61 6.14

B3LYP 1P1 5.73 5.58 6.03

LDA 3P1 4.30 4.40 4.35 4.35 4.41 4.03

BLYP 3P1 4.27 4.25 4.32

B3LYP 3P1 4.05 4.04 4.14

Cd LDA 1P1 5.44 5.50 5.34 5.35 5.74 5.47 5.42

BLYP 1P1 5.36 5.18 5.64

B3LYP 1P1 5.27 5.14 5.54

LDA 3P1 4.02 4.04 4.02 4.02 4.11 4.12 (3.80)f

BLYP 3P1 3.96 3.92 4.01

B3LYP 3P1 3.76 3.73 3.84

Hg LDA 1P1 6.56 6.66 6.53 6.53 6.85 6.57 6.70

BLYP 1P1 6.41 6.30 6.69

B3LYP 1P1 6.35 6.27 6.62

LDA 3P1 5.06 5.12 5.08 5.09 5.26 5.12 4.89

BLYP 3P1 4.96 4.94 5.13

B3LYP 3P1 4.73 4.73 4.94

a all electron 4-component implementation based on Dirac–Coulomb Hamiltonian and
Slater-type functions;30 b all electron 4-component implementation based on

Dirac–Coulomb Hamiltonian and Gaussian-type functions;31 c all electron 2-component
implementation based on ZORA Hamiltonian and Slater-type functions;62 d all electron

2-component implementation based on ZORA Hamiltonian and Gaussian-type functions;65

e 2-component implementation based on 2c-ECP and Gaussian-type functions;66 f

non-persistent line according to Ref.61
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4.2 Excitation energies in diatomic molecules (TlH, AuH)

Heavy-element hydrides are systems with a richer electronic structure than atoms, yet they

are still sufficiently simple to be used as benchmark systems. We selected closed shell di-

atomic molecules TlH and AuH because the systems exhibit pronounced relativistic effects

and have been previously used in the linear-response TDDFT benchmark calculations at the

quasi-relativistic two-component level of theory by Wang et al.,62 and at the fully relativistic

four-component level of theory by Gao et al.30 Moreover, high-quality experimental data are

also available from Huber and Herzberg.49 Note, no account is made of vibronic effects in our

calculations and the evaluated absorption spectra contain only information about vertical

excitation energies.

To obtain the absorption spectrum from four-component RT-TDDFT simulations, the

electronic ground-state calculated in the absence of an external electric field was perturbed

by an analytic δ-function pulse with strength 0.00001 au (see Eq. (21)). The perturbed state

was evolved for 30000 time steps of length 0.15 au, which corresponds to total simulation

time of 109 fs and leads to the energy (frequency) resolution of ±0.0380 eV. During the time

propagation, the induced dipole moments were evaluated on-the-fly and Fourier transformed

from time to frequency domain at the end of the simulations to yield the final absorption

spectrum, as illustrated in Figure 2 and Figure 3.

In the absence of spin–orbit coupling, the ground-state electronic configuration of TlH has

the valence orbital occupation σ2 where the HOMO σ orbital is composed of the pz orbital of

Tl and the s orbital of H. The LUMO is a π orbital composed of the p orbitals of thallium and

hydrogen. Due to the spin-orbit coupling, the π orbitals are split into π1/2 and π3/2 levels.

The calculated absorption spectrum of TlH is presented in Figure 2 and the corresponding

data for the lowest vertical excitation energies are collected in Table 2. The first two lines

can be assigned to the excitations from the doubly degenerate HOMO to the π1/2 and π3/2

virtual orbitals, respectively. This is confirmed by the dipole-weighted transition matrix

analysis shown in Figure 2, where one can clearly see the most important occupied and
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vacant orbitals involved in the transition, as well as by the 1:2 relative intensities of the

lines, reflecting the degeneracies of the π1/2 and π3/2 orbitals. We note that the LR-TDDFT

results of Wang et al.62 include additional lines in this area not visible in our spectrum.

This is due to the aforementioned difference between the RT and LR calculations: only

allowed transitions can be obtained from the RT simulation. Experimentally, an additional

line is observed at 3.02 eV, corresponding to the triplet-excited state. This line is too close

to the singlet-excited state signal at 3.00 eV to be distinguishable in our calculations due

to the resolution limits, and besides it would be significantly weaker in intensity than the

singlet line. Our results are in slightly better agreement with experiment than the results

of Wang et al.62 and the use of the hybrid functional further improves the agreement. Still

the gap between lines A and B is slightly better in their work. In general these results

support expectations of Wang et al.: ”. . . as far as the excitations of the valence electrons

are concerned, the error of the ZORA method in dealing with relativistic effects should be

smaller than the error of the approximations inherent in the XC potential and XC kernel.”62

The calculated absorption spectrum of AuH is presented in Figure 3 and the vertical

excitations energies are compared with the results of other authors and available experimental

data in Table 2. In the absence of spin–orbit coupling, the ground state of AuH around the

equilibrium geometry is a closed-shell state of symmetry 1Σ+ (in the Λ-S notation). Due to

the spin-orbit interaction, the valence molecular orbitals of 1Σ+ are split and the ground state

X 0+ consists of the molecular bispinors:30 (1σ1/2)2 (1π1/2)2 (1π3/2)2 (δ3/2)2 (δ5/2)2 (2σ1/2)2.

The presence of several low-lying vacant molecular bispinors, in particular 3σ1/2, 2π1/2, 2π3/2,

leads to a richer excitation pattern for AuH than TlH or group 12 atoms. The developed

analysis in terms of dipole-weighted transitions confirms the observation for 3 out of 4 lowest

separate lines in the absorption spectrum. Whereas the first spectral line, depicted as A

in Figure 3, can be interpreted as transition from the doubly degenerate HOMO orbital

2σ1/2 (number 79 and 80) to the doubly degenerate LUMO orbital 3σ1/2 (number 81 and

82), other transitions have more complicated structure. For instance, the second excited
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state 0+ calculated with B3LYP at 4.48 eV is dominated by the 1π1/2 → 3σ1/2 transition

accompanying by excitations also from other valence molecular bispinors.

The use of hybrid DFT functional does not improve the agreement with experimental

data. While in the case of TlH molecule LDA excitation energies are smaller than those

obtained with the B3LYP functional, for AuH the situation is opposite. Since for both

molecules the LDA results underestimate the experimental data the use of hybrid functional

improves the results for TlH but worsen for AuH. The observed trends agree with results of

other authors and available experimental data. The results of Wang et al.62 and Gao et al.30

are in slightly better agreement with experiment than our results. A few points can affect

the comparison. One of them is related to the basis set quality, since both implementations

involve Slater-type functions. The other point is the difference in the used approaches: RT-

TDDFT versus LR-TDDFT. However we would prefer to postpone drawing any definitive

conclusions before gaining more experience with different systems including those with charge

transfer excitations.
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Table 2: The vertical excitation energies of low-lying electronic states of TlH and AuH (in
eV) . The present 4-component real-time TDDFT (RT-TDDFT) results are compared with
the recent relativistic linear-response TDDFT (LR-TDDFT) calculations and experimental
data. The excited states (in the ω–ω notation) are assigned to the spectral lines in Figure 2
and Figure 3 in square brackets.

Molecule DFT Excited state Excitation energy

RT-TDDFT LR-TDDFT Exp.49

This work Wanga Gaob Kühnc

TlH LDA [A] 0+ 2.07 2.08 — 2.09 2.20

B3LYP 2.13

LDA [B] 1 2.96 2.88 — 2.64 3.00

B3LYP 3.04

AuH LDA [A] 0+ 3.31 3.42 3.39 — 3.43

B3LYP 3.19

LDA [B] 0+ 4.52 4.70 4.66 — 4.78

B3LYP 4.48

LDA [C] 1 5.21 5.01 4.96 — 5.32

B3LYP 5.05

a all electron 2-component implementation based on ZORA Hamiltonian and Slater-type
functions;62 b all electron 4-component implementation based on Dirac–Coulomb

Hamiltonian and Slater-type functions;30 c 2-component implementation based on
2c-ECP and Gaussian-type functions;66
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Figure 2: Top: Calculated absorption spectrum of TlH using the present 4-component real-
time TDDFT (RT-TDDFT) approach. Bottom: Analysis of the fist two spectral lines in
terms of ground state occupied–virtual MO contributions by means of a dipole-weighted
transition matrix analysis (Section 2.5). The first line can be identified as HOMO to LUMO
transition, whereas the second line as HOMO to LUMO+1 transition.
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Figure 3: Top: Calculated absorption spectrum of AuH using the present 4-component real-
time TDDFT (RT-TDDFT) approach. Bottom: Analysis of the fist four spectral lines in
terms of ground state occupied–virtual MO contributions by means of a dipole-weighted
transition matrix analysis (Section 2.5). The first line can be identified as HOMO to LUMO
transition.
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5 Summary and outlook

We have presented the first implementation of real-time time-dependent density functional

theory at the relativistic four-component level of theory. The use of four-component relativis-

tic theory in combination with RT-TDDFT has been made possible by matrix representation

of the Dirac–Coulomb Hamiltonian using a time-independent basis of restricted kinetically

balanced Gaussian-type functions, and fast techniques for evaluating two-electron integrals

for restricted kinetically balanced basis sets.36 To ensure numerical stability of the imple-

mentation, a second-order Magnus expansion in combination with an analytic representation

of the delta-shaped pulse describing the applied external electric field has been implemented

and used. We have also proposed a dipole-weighted transition matrix analysis facilitating

the interpretation of spectral transitions in terms of ground-state molecular orbitals.

The applicability of this new implementation has been demonstrated by calculations of

the valence electronic absorption spectrum of the group 12 atoms (Zn, Cd and Hg) as well

as on two heavy-element hydrides (AuH and TlH). These systems have served as important

benchmarks for the calculation of electronic absorption spectra using relativistic methods

due to their fairly simple electronic spectrum, the importance of relativistic effects in these

systems and the availability of experimental data of high quality.

We have demonstrated that our calculations reproduce well earlier relativistic four-

component studies for which linear response theory has been used to calculate the excitation

energies. This is in agreement with expectations, as RT-TDDFT and LR-TDDFT should

give the same absorption spectra in the frequency domain if the computational methodology

is the same. Test calculations also showed that in the weak-field limit the dipole-weighted

transition matrix analysis of RT-TDDFT gives the same character of vertical excitations

as the LR-TDDFT approach. It is furthermore interesting to note that the LDA gives the

best agreement with experiment for the lowest singlet-excited state of the group 12 atoms,

whereas exact exchange through the use of a hybrid functional is mandatory in order to get

reasonable agreement with experiment for the lowest triplet-excited state. For TlH and AuH
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molecules the situation is more complicated: the hybrid functional improves results for TlH

but worsen for AuH.

Whereas both LR-TDDFT and RT-TDDFT provides in the frequency domain identical

results, RT-TDDFT gives access to all excited states with the same computational complex-

ity, independently of whether we are considering valence-excited states or core-excited states.

In the later case special computational techniques must be often used, such as the complex

polarization propagator technique67 or Lanczos algorithms for selected energy regions.68

RT-TDDFT also allows fast electronic processes to be studied. With recent experimental

advances, it is now possible to follow electronic rearrangements with attosecond resolution,69

and RT-TDDFT can be a useful technique for providing additional insight into the changes

occurring in the electronic density at this time scale. Combining the propagation of the

electron density with nuclear dynamics in ab initio Ehrenfest dynamics70–72 will also provide

a unique opportunity to explore fast chemical processes. In combination with a relativistic

description of the electron density, for which spin-orbit effects are included variationally,

this can provide a unique tool for studying spectroscopic techniques such as femtosecond

stimulated Raman spectroscopy73 or complex chemical processes such as light-induced spin-

crossover processes.74

Finally, the inclusion of relativistic effects variationally, and in particular spin–orbit ef-

fects, will allow us to explore important spectral regions observed in X-ray spectroscopy. In

particular the L2 and L3 edges of near-edge X-ray absorption spectroscopy requires a vari-

ational treatment of spin–orbit effects in order to reproduce the splitting of the 2p orbitals

into 2p1/2 and 2p3/2 orbitals. A first theoretical study of the X-ray absorption spectrum of

SF6 obtained with the RT-TDDFT approach have recently been performed by our group.75
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6 Appendix: Proof of the analytic form for δ-function

type perturbations

In order to prove the statement made in Section 2.4

U(0+, 0−) = e−iP̃, (31)

let us consider the time-dependent equation for the evolution operator42

i
∂

∂t
U(t, t′) = F(t)U(t, t′), (32)

where t and t′ are arbitrary times, and U(t′, t′) = 1 is the initial condition. Alternatively,

the integral form of Eq. (32) can be written as

U(t, t′) = 1− i
∫ t

t′
F(τ)U(τ, t′)dτ. (33)

We solve this equation iteratively

U(k+1)(t, t′) = 1− i
∫ t

t′
F(k)(τ)U(k)(τ, t′)dτ, (34)

where

F(k)(τ) = F
(k)
0 (τ) + P̃δ(τ), (35)

F
(k)
0 (τ) ≡ F0

(
D(k)(τ)

)
, (36)

D(k)(τ) = U(k)(τ, t′)DMO
0 U(k)†(τ, t′), (37)

U(0)(τ, t′) = 1. (38)
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Let t′ = −∆ where 0 < ∆� 1. Our aim is to evaluate the limit

lim
∆→0+

lim
k→∞

U(k)(∆,−∆) ≡ U(0+, 0−). (39)

To first order we obtain

U(1)(∆,−∆) = 1− iP̃− i
∫ ∆

−∆

F
(0)
0 (τ)dτ = 1− iP̃ +O(∆), (40)

where F
(0)
0 is the ground-state Fock matrix. Similarly, using Eq. (34), we can write the

second order contribution as

U(2)(∆,−∆) = 1− i
∫ ∆

−∆

F
(1)
0 (τ)dτ − iP̃+

+ (−i)2

∫ ∆

−∆

dτ1

∫ τ1

−∆

dτ2F
(1)
0 (τ1)F

(0)
0 (τ2)+

+ (−i)2

∫ ∆

0

F
(1)
0 (τ)dτP̃+

+ (−i)2P̃

∫ 0

−∆

F
(0)
0 (τ)dτ+

+ (−iP̃)2

∫ ∆

−∆

dτ1

∫ τ1

−∆

dτ2δ(τ1)δ(τ2). (41)

Since D(1)(τ) and F
(1)
0 (τ) are bounded functions of time, albeit discontinuous at τ = 0, all

integrals over F
(0)
0 and F

(1)
0 can be shown to be proportional to ∆, and thus vanish in the

limit of ∆→ 0+. The final term can be evaluated using

∫ ∆

−∆

dτ1

∫ τ1

−∆

dτ2δ(τ1)δ(τ2) =
1

2

∫ ∆

−∆

dτ1

∫ ∆

−∆

dτ2δ(τ1)δ(τ2) =
1

2
(42)

which leads to

U(2)(∆,−∆) = 1− iP̃ +
1

2
(−iP̃)2 +O(∆). (43)
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To express U(k) we need to generalize Eq. (42) to

∫ ∆

−∆

dτ1

∫ τ1

−∆

dτ2 . . .

∫ τk−1

−∆

dτkδ(τ1) . . . δ(τk) =
1

k!
, (44)

which is implied by the fact that the integrand is the same for each integration region defined

by a permutation of (τ1, . . . , τ2). Finally, we obtain

U(k)(∆,−∆) =
k∑
j=0

(−iP̃)j

j!
+Ok(∆) (45)

where Ok is, in principle, a different function of ∆ for each k approaching zero if ∆→ 0+. If

we assume convergence of the iterative scheme, and hence the existence of the limit k →∞

in Eq. (39), we recover the result in Eq. (31).
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