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We present an implementation and application of electron dynamics based on real-time time-dependent
density functional theory (RT-TDDFT) and relativistic 2-component X2C and 4-component Dirac–
Coulomb (4c) Hamiltonians to the calculation of electron circular dichroism and optical rotatory
dispersion spectra. In addition, the resolution-of-identity approximation for the Coulomb term (RI-J)
is introduced into RT-TDDFT and formulated entirely in terms of complex quaternion algebra. The
proposed methodology was assessed on the dimethylchalcogenirane series, C4H8X (X = O, S, Se,
Te, Po, Lv), and the spectra obtained by non-relativistic and relativistic methods start to disagree
for Se and Te, while dramatic differences are observed for Po and Lv. The X2C approach, even
in its simplest one-particle form, reproduces the reference 4c results surprisingly well across the
entire series while offering an 8-fold speed-up of the simulations. An overall acceleration of RT-
TDDFT by means of X2C and RI-J increases with system size and approaches a factor of almost
25 when compared to the full 4c treatment, without compromising the accuracy of the final spectra.
These results suggest that one-particle X2C electron dynamics with RI-J acceleration is an attractive
method for the calculation of chiroptical spectra in the valence region. Published by AIP Publishing.
https://doi.org/10.1063/1.5051032

I. INTRODUCTION

Chirality, i.e., non-superimposability of an object and its
mirror image, is a ubiquitous phenomenon in chemistry and
a prime example of the relationship between the molecular
structure and properties. A pair of enantiomers, i.e., a chiral
molecule and its mirror image, differs in its interaction with
other chiral objects, including molecules or light. Notably,
enantiomers possess different indices of refraction for left-
and right-handed circularly polarized light.1 The difference in
the real (dispersive) part of the index of refraction is called cir-
cular birefringence and leads to optical rotation, i.e., rotation
of the plane of polarization of linearly polarized light passing
through an optically active medium, whereas the difference
in the imaginary (absorptive) part of the index of refraction
is called circular dichroism (CD) and leads to the generation
of ellipticity in the linearly polarized light.1–3 Optical rotation
is measured either as the difference in refractive indices or
as the angle of rotation of the linearly polarized light. Simi-
larly, circular dichroism is measured either as the difference in
extinction coefficients or as the induced ellipticity. The depen-
dence of these properties on the frequency of light is called
optical rotatory dispersion (ORD) or circular dichroism (CD)
spectroscopy, respectively. CD spectra can be measured in the
UV/Vis or X-ray regions as a result of transitions between elec-
tronic states—(X-ray) electron circular dichroism [(X)ECD].4

In the IR region, the transitions occur between vibrational

states resulting in vibrational circular dichroism (VCD).5 All
these chiroptical spectroscopies play a crucial role in the iden-
tification of compounds or in the determination of absolute
configurations, presenting a challenge for theory in terms of
ensuring reliable computational results and an opportunity for
theoretical chemistry to aid in the analysis of experimental
data.6–9

The first-principles quantum-chemical determination of
indices of refraction, or chiroptical spectra in general, requires
the calculation of microscopic frequency-dependent molecu-
lar property tensors. In the context of time-dependent density
functional theory (TDDFT), there are two main approaches
that can be used. The first approach is based on perturbation
theory and can proceed in two ways. One either calculates
excitation energies and the corresponding transition moments
followed by applying line shape functions to the calculated
stick spectra.10–12 Alternatively, one calculates the spectrum
directly in the frequency domain using damped response the-
ory.13 Several applications to the calculations of chiropical
properties have been reported and reviewed for TDDFT14–21

as well as for post-Hartree–Fock methods such as coupled
cluster (CC) theory.22,23

The second approach, which has gained increasing atten-
tion in recent years, considers the dynamics of molecules
under the influence of external fields by propagating the
electronic state directly in time, the so-called real-time
(RT) TDDFT,24–31 or similar post-Hartree–Fock dynamical
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approaches.32–37 Frequency-dependent molecular properties
are then recovered as Fourier transforms of time-dependent
properties recorded in the course of the simulations. Compared
to perturbation theory-based approaches, real-time methods
allow the description of molecules under strong external
fields or external fields with complicated time dependence.
Moreover, they can access spectra in various regions from
a single run and do not require the evaluation of response
kernels. On the other hand, long time propagations present
a challenge in terms of computational cost, prompting the
development of various acceleration techniques such as the
time-dependent incremental Fock build method,38 the non-
recursive Chebyshev expansion,39 the Padé approximants,40

or the resolution-of-identity (RI) technique presented in this
paper. Pioneering applications of RT-TDDFT to CD spectra
have already been presented at the non-relativistic (1c) level
of theory utilizing both real-space grids41,42 and Gaussian
orbitals.43 For more information on real-time methodologies,
the reader is referred to a recent review by Goings, Lestrange,
and Li.44

In order to correctly describe molecules containing atoms
from across the whole periodic table, one needs to take rela-
tivistic effects into account.45 A typical approach in relativistic
quantum chemistry is to combine the 4-component (4c) one-
electron Dirac operator with a non-relativistic Coulomb inter-
action between the electrons into the 4c Dirac–Coulomb (DC)
Hamiltonian. This currently represents the “gold standard”
in relativistic quantum chemistry and can be used to bench-
mark more cost-effective approximate methods. One rung
below the 4c Hamiltonians are the 2-component (2c) Hamil-
tonians, some of the popular and variationally stable ones
being the second-order Douglas–Kroll–Hess (DKH2) Hamil-
tonian,46–48 the zeroth-order regular approximation (ZORA)
Hamiltonian,49,50 the normalized elimination of small compo-
nent (NESC) Hamiltonian,51,52 and the closely related “exact”
2-component (X2C) Hamiltonian.53–57 The X2C Hamiltonian,
in particular, has seen growing interest in the relativistic quan-
tum chemistry community in recent years,58,59 as it allows
for a reduction of the original 4c problem to 2c form at the
expense of simple algebraic operations, thus yielding sig-
nificant acceleration and still preserving most of the crucial
relativistic contributions. The first implementation of 4c RT-
TDDFT has been presented by Repisky et al.60 followed
by its application to X-ray absorption near-edge structure
(XANES) spectra.61 Later, it has been shown that the X2C
transformation can be applied in the time-dependent context
as well, provided the external field has a small amplitude or
frequency.62,63

In this paper, we present an implementation of 4c- and
X2C-based relativistic electron dynamics and its application
to the chiroptical spectra of the benchmark dimethylchalco-
genirane series, C4H8X (X = O, S, Se, Te, Po, Lv). We begin by
defining the central chiroptical property tensor, then continue
with the description of the relativistic density matrix prop-
agation, and further formulate the RI approximation within
RT-TDDFT. The paper ends with a discussion of the results,
with an emphasis on relativistic effects and the accuracy and
performance of the X2C method in combination with the RI
acceleration.

II. THEORY
A. Chiroptical properties

The central microscopic molecular property that can be
directly related to ORD and ECD is the electric dipole–
magnetic dipole (Rosenfeld) tensor β.2,64 In the sum-over-
states formalism, the ij Cartesian component of this tensor
reads (in atomic units)

βij(ω) = −2
∑
p,q

=
(
〈p|µi |q〉

〈
q|mj |p

〉)
Ω2

qp − ω2
, (1)

where p and q are the many-particle stationary states,Ωqp = Eq

−Ep is the energy/frequency difference,=() refers to the imag-
inary part, m is the magnetic dipole, and µ is the electric dipole
moment operator, respectively. The Rosenfeld tensor connects
the induced electric dipole moment to the time derivative of a
magnetic field (B) as well as the induced magnetic moment to
the time derivative of an electric field (E),1

µind
i (ω) = βij(ω)Ḃj(ω) + · · ·, (2)

mind
i (ω) = −βji(ω)Ėj(ω) + · · ·. (3)

The ellipses stand for higher-order terms in electric and mag-
netic fields that can be neglected for isotropic samples and the
weak-field regime, as considered in this study. In Sec. II B,
we outline how to obtain the Rosenfeld tensor from electron
dynamics simulations using Eq. (3).

B. Relativistic electron dynamics
for chiroptical properties

The dynamics of electrons in the presence of a time-
dependent external field is described by the Liouville–von
Neumann equation,65 which for Kohn-Sham RT-TDDFT66 in
an orthonormal basis takes the form

i
∂D(t)
∂t
= [F(t), D(t)]. (4)

In Eq. (4), D(t) is the one-electron reduced density matrix
and F(t) is the Fock matrix constructed from D(t). Equa-
tion (4) is, therefore, non-linear and requires sophisticated
propagation techniques.60,67–74 Our implementation utilizes
the Magnus expansion truncated to first order combined with
an extrapolation–interpolation scheme.60 The Fock matrix F(t)
in Eq. (4) can be expressed as

F(t) = h + VXC[ρ(t)] + G[D(t)] + Vext(t), (5)

where h is the one-electron term, VXC is the exchange–
correlation potential matrix, and G is the two-electron term
containing the Coulomb interaction J and, in the case of hybrid
functionals, also the exchange interaction K. Vext(t) is the
time-dependent external field matrix that governs the time
evolution of the system.

In 4c DC relativistic electron dynamics, the one-electron
term is the matrix representation of the 4c one-electron Dirac
Hamiltonian consisting of the kinetic contribution and the
electron-nuclear Coulomb contribution, respectively. The two-
electron term is constructed by assuming an instantaneous,
non-relativistic Coulomb interaction between electrons. Sim-
ilarly, the DFT exchange–correlation potential is expressed in
its standard non-relativistic and adiabatic form, utilizing in
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the current implementation a non-collinear formalism based
on the spin magnetization vector,75 as described in detail in
Ref. 76.

The X2C Fock matrix is constructed by a block diag-
onalization of the original 4c Fock matrix and discarding the
block with the negative-energy eigenspectrum. In an ideal case,
such a procedure would require the X2C block-diagonalization
of two-electron terms in each time step which leads to a
method even more expensive than the full 4c treatment. There-
fore, in practice, approximate solutions are sought after, both
in the static77–81 and dynamic (time-dependent) case.62,63 In
our present implementation, we apply the one-electron X2C
approximation that only considers the block-diagonalization
of the one-electron term, i.e.,

h4c → hX4C ≡ U†h4cU=
(
hX4C

+ 0
0 hX4C

−

)
→ hX2C ≡ hX4C

+ ,

(6)
while adding the untransformed two-electron large–large
block. The decoupling matrix U is built in a static case from
eigenvectors of h4c by solving algebraic equations.55–57 In
the dynamical regime, the decoupling matrix is in general
time dependent; however, we neglect this time dependence by
invoking an adiabatic approximation valid under conditions
discussed in our previous work.62 The detailed derivation of
the X2C variant of the Liouville–von Neumann equation, as
well as the decoupling procedure in the time regime, can be
found in earlier work by Konecny et al.62 and Goings et al.63

To calculate ECD and ORD spectra, the external per-
turbation potential in Eq. (5) takes the form of an electric
pulse described within the dipole approximation as Vext(t)
= −P·E(t), where P is the matrix representation of the electric
dipole moment operator and E(t) = κδ(t − t0) is the exter-
nal electric field with the vector amplitude κ and δ-functional
time dependence. The ground-state self-consistent field (SCF)
density matrix D0 is perturbed by this pulse, D(t0) = exp[−iP]
D0 exp[iP],60 and evolved from an initial time t0 in a series
of discrete time steps of length ∆t. In each time step tj, the
induced magnetic dipole moment is calculated from a trace of
the magnetic dipole moment matrix and the time-dependent
density matrix

mind(tj) = Tr[MD(tj)] −mstatic, (7)

where the static magnetic moment is calculated as mstatic

= Tr[MD0]. The recorded magnetic dipole moments are sub-
sequently transformed to the frequency domain by means of a
discrete Fourier transformation, while introducing an artificial
damping factor γ to ensure finite width of the spectral lines,

mind(ωk) =
n−1∑
j=0

∆t mind(tj)e
−γ tj exp

{
2πi

jk
n

}
. (8)

Here, k = 0, 1, . . ., n − 1, where n is the number of time steps
and ωk = 2πk/∆t is the kth frequency point.

The frequency-dependent induced magnetic moment in
Eq. (8) can be related to the expansion in Eq. (3) as

mind
i (ω) = iβji(ω)κj, (9)

provided that higher order terms have been neglected in Eq. (3)
and a δ-type impulse electric field was assumed as discussed in

the previous paragraph. The final expression for the Rosenfeld
tensor thus reads

βji(ω) = −i
mind

i (ω)

κj
. (10)

The ORD spectral function is then proportional to the real
part of βji(ω) (or the imaginary part of mind

i (ω)), and the ECD
spectral function is proportional to the imaginary part of βji(ω)
(or the real part of mind

i (ω)).
Note that the procedure outlined above does not simulate

the experimental ECD process directly but rather takes advan-
tage of the fact that the Rosenfeld tensor that defines the lowest-
order chiroptical properties also appears in other formulas,
such as Eq. (3). Time-dependent magnetization induced by the
electric component of the external radiation field described by
Eq. (3) is more suitable for RT-TDSCF treatment.

A finite-basis representation of the magnetic dipole
moment operator, denoted as M in Eq. (7), has the follow-
ing forms in non-relativistic (1c) and 4c theories (in Hartree
atomic units):

m1c = −
1
2c

rg × p, (11)

m4c = −
1
2

rg × α. (12)

Here α is the vector composed of Dirac’s α matrices, p is
the non-relativistic momentum operator, and rg = r − Rg is the
electron position operator relative to a fixed gauge, Rg. All cal-
culations presented in this paper assume the gauge placed in the
centre of mass of the molecule. Although the present method-
ology is gauge dependent, this dependence is well established
for ECD and ORD both at the non-relativistic and relativis-
tic levels of theory,10,17 and we have not explored this further
here. In 4c theory, the operators are represented in a restricted
kinetic balance (RKB) basis X4c, where the individual large
(L) and small (S) component basis elements are defined as

X4c
µ =

(
XL
µ 0

0 XS
µ

)
=

(
σ0 0
0 (2c)−1(σ · p)

)
χµ(r). (13)

Here, σ0 is a 2 × 2 unit matrix, σ is the vector composed of
Pauli matrices, and the functions χµ(r) are elements of a real
scalar basis set, in our implementation chosen to be Gaussian-
type orbitals (GTOs). The elements of the 4c magnetic dipole
moment matrix in the RKB basis are

M4c
µν

= −
1
4c

(
0 〈χµ |(rg × σ)(σ · p)| χν〉

〈χµ |(σ · p)(rg × σ)| χν〉 0

)
.

(14)

In X2C theory, the magnetic dipole matrix is given by a picture-
change transformation of the original 4c dipole moment matrix
using the aforementioned decoupling matrix U and leaving
only its upper diagonal block, i.e.,

MX2C =
[
U†M4cU

]
+
, (15)

which resembles the decoupling procedure for h4c outlined in
Eq. (6).
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C. Resolution-of-identity for the Coulomb
problem in RT-TDDFT

In the relativistic two- and four-component molecular
electronic structure calculations, the Coulomb term in the Fock
matrix,

Jµν(t) =
∑
κλ

[Ωµν |Tr(ΩκλDλκ(t))], (16)

requires the evaluation of four-centre electron repulsion inte-
grals (ERIs)

[Ωµν |Ωκλ] ≡
∫

X†µ(r1)Xν(r1)
1

r12
X†κ(r2)Xλ(r2)dr1dr2, (17)

where Xµ refers to a multicomponent basis which, in accor-
dance with Eq. (13), can be either Xµ = XL

µ for 2c theory or
Xµ = X4c

µ for 4c theory. Due to the multicomponent nature, all
elements associated with the basis, density matrix, or Coulomb
matrix have an internal 2 × 2 or 4 × 4 structure, a fact
that is indicated by bold symbols in our notation. Likewise,
Tr() in Eq. (16) denotes the matrix trace over the multiple
components.

To accelerate the evaluation of J by means of the
resolution-of-identity, the electron repulsion integrals in
Eq. (16) are approximated in the sense of a Dunlap’s robust
fit82 by [ KΩµν |Ωκλ] such that the residual Coulomb-repulsion
integral,

[∆Ωµν |∆Ωκλ] = [Ωµν |Ωκλ] − [ KΩµν |Ωκλ], (18)

is bilinear in errors∆Ωµν and∆Ωκλ. It is customary to approx-
imate the pairs of basis functions |Ωµν] as a superposition of
real, scalar, atom-centered auxiliary basis functions |α]; then,

|∆Ωµν ] = |Ωµν ] −
∑
α

cµνα |α ]. (19)

The individual expansion coefficients cµνα are then obtained
by minimizing the residual Coulomb-repulsion integral with
respect to cµνα . This leads to a set of linear equations∑

β

[α | β]cµνβ = [α |Ωµν], (20)

whose solution when inserted into the expression for J with
approximate integrals gives

Jµν(t) ≈
∑
κλ

∑
αβ

[Ωµν |α][α | β]−1[β |Tr(ΩκλDλκ(t))]. (21)

The original problem involving the evaluation of four-centre
integrals is thus factorized into the product of two- and three-
centre integrals, and the procedure is customarily denoted
as the resolution-of-identity approximation for the Coulomb
term (RI-J). The RI-J technique is widely used in non-
relativistic molecular electronic structure calculations as it is
known to affect the ground-state molecular energy by only 0.1
mhartree per atom, provided pre-optimized auxiliary sets are
employed.83 The approach has recently been extended also to
the relativistic 4c domain.84,85 However, it is not known if the
RI-J approach is numerically stable for RT-TDDFT covering
large time-propagation ranges.

In our implementation of RI-J within RT-TDDFT, the
Coulomb term in Eq. (21) is calculated at every time point tj

in three steps: (a) 3-center ERIs are evaluated and contracted

on-the-fly with the time-dependent density matrix,
∑
κλ[α|

Tr(ΩκλDλκ(tj))]≡ dα(tj); (b) the linear set of equations derived
from Eq. (20),

∑
β[α|β]cβ(tj) = dα(tj), is solved by means of a

Cholesky decomposition; (c) 3-center ERIs are evaluated once
again and contracted on-the-fly with the scalar expansion coef-
ficients,

∑
β[Ωµν |β]cβ(tj). The most time-consuming part of

the algorithm is the first step, as its floating point operations
(FLOPs) increase in the relativistic regime due to the multi-
component character of the density matrix and basis elements
as compared to the non-relativistic RT-TDDFT. However, the
FLOPs can be greatly reduced in this case by reformulating the
problem into the complex quaternion algebra, HC, also known
as biquaternion algebra. For example, every complex 2c den-
sity matrix D(t) ∈ C2N×2N , which is Hermitian and does not
impose any time-reversal symmetric structure

D(t) =

(
D11 D12
D21 D22

)
, D11, D12, D21, D22 ∈ CN×N , (22)

can be mapped onto the matrix of complex quaternions,
QD(t) ∈ HN×N

C ,

D→ QD = (0D+i 4D)+(1D+i 5D)ǐ+(2D+i 6D)ǰ+(3D+i 7D)ǩ,
(23)

where i stands for the imaginary unit and 1, ı̌, ǰ and ǩ denote
the basis elements of HC which obey the identities

ǐ2 = ǰ2 = ǩ2 = ǐǰǩ = −1. (24)

Note that these relations also determine all the possible prod-
ucts of ı̌, ǰ, and ǩ. The complex quaternion constituents 0−7D ∈
RN×N are given by

0D = <(D11 + D∗22)/2, 4D = =(D11 − D∗22)/2,
1D = =(D11 + D∗22)/2, 5D = −<(D11 − D∗22)/2,
2D = <(D12 − D∗21)/2, 6D = =(D12 + D∗21)/2,
3D = =(D12 − D∗21)/2, 7D = −<(D12 + D∗21)/2

(25)

and have the following matrix properties:

kD = kD
T

, lD = −lD
T

, k ∈ 0, 5, 6, 7, l ∈ 1, 2, 3, 4.
(26)

Considering the properties in Eq. (26) as well as the fact that

the matrix of 2c overlap distributions, Ω(r) ≡
(
XL

)†
XL ∈

C2N×2N (R3), has in its complex quaternion representation only
one non-zero component, i.e.,

Ω→QΩ = 0Ω, (27)

the entire contribution to
∑
κλ[α| Tr(ΩκλDλκ(tj))] arises only

from a single component of the complex quaternion trace

2
∑
κλ

[α |0Ωκλ]0Dλκ(tj). (28)

Note that the proposed quaternion-based 2c RI-J procedure
gives rise to exactly the same number of real arithmetic
operations as RI-J in the 1c unrestricted SCF.

In the 4c case, the formulation and evaluation of the
Coulomb term in terms of complex quaternion algebra are
slightly more elaborate. First, it involves a reordering of
basis set components discussed by Saue et al.,86 followed
by a mapping of the 4c time-dependent density matrix
D(t) ∈ C4N×4N and of the 4c overlap distribution matrix
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Ω(r) ≡
(
X4c

)†
X4c ∈ C4N×4N (R3) into complex quaternions

in the sense of Eq. (23), the latter being

Ω(r)→QΩ(r) = 0Ω+ 1Ωǐ + 2Ωǰ + 3Ωǩ ∈ H2N×2N
C (R3). (29)

Here, the imaginary quaternion constituents 4−7Ω(r) ∈

R2N×2N (R3) are zero, whereas the real constituents 0−3Ω(r) ∈
R2N×2N (R3) are non-zero and for k, l ∈ x, y, z, read

0Ωµν =

(
χµ χν 0

0 (∇k χµ)(∇k χν)

)
,

1Ωµν =

(
0 0

0 εzkl(∇k χµ)(∇l χν)

)
,

2Ωµν =

(
0 0

0 εykl(∇k χµ)(∇l χν)

)
,

3Ωµν =

(
0 0

0 εxkl(∇k χµ)(∇l χν)

)
,

(30)

where ε is the Levi-Civita symbol. In the formulation pre-
sented, the evaluation of the 4c trace in expression

∑
κλ[α|

Tr(ΩκλDλκ(tj))] reduces only to the following four terms:

2
∑
κλ

3∑
k=0

[α |kΩκλ]kDλκ(tj), (31)

which require just real (time-reversal symmetric) constituents
of the complex quaternion density matrix. Note that the use
of quaternion algebra for reducing the computation burden
of relativistic 4c calculations has already been advocated by
several authors, with a primary focus either on the diagonal-
ization86–88 or on the relativistic point group symmetry.89 All
these approaches, however, are limited to Kramers-restricted
(closed-shell) molecular cases and thus involve only the real
quaternions. Instead, the present approach based on a gen-
eralized concept of complex quaternions focuses mainly on
reducing arithmetic operations associated with the Fock matrix
construction. In addition, the use of complex quaternions
allows to elegantly address the Kramers-unrestricted (open-
shell) regime, which is indispensable in the real-time TDDFT
calculations.

III. COMPUTATIONAL DETAILS

Geometries for lighter dimethylchalcogeniranes C4H8X
with X = O, S were taken from other study,19 while for X =
Se, Te, Po, Lv, the geometries were optimized using the Ams-
terdam Density Functional (ADF) program suite90–92 with the
scalar ZORA Hamiltonian (Se, Te) and with the spin-orbit
ZORA Hamiltonian (Po, Lv), employing the Perdew-Burke-
Ernzerhof (PBE) functional93–95 and the ZORA/TZ2P Slater-
type orbital (STO) basis set.96 All geometries can be found in
the supplementary material.

All property calculations were performed with a devel-
oper’s version of the ReSpect program97 using the PBE func-
tional.93–95 All-electron GTO basis sets were employed in
their uncontracted form, namely, Dyall’s augmented cVDZ
basis98–100 for Te, Po, and Lv and Dunning’s augmented
cc-pVDZ basis101–103 for all other elements. The auxiliary
basis sets for the RI-J procedure were generated by an
adjusted even-tempered algorithm104 and are available in the

supplementary material. The numerical integration of the
exchange–correlation potential was done with an adaptive
molecular grid of medium size (program default), employ-
ing a noncollinear approach within the Kramer’s unrestricted
formalism, as specified by Komorovsky et al.76 In 2c and 4c
calculations, atomic nuclei of finite size were approximated by
the Gaussian charge distribution model.105 For the evaluation
of four-center two-electron repulsion integrals in the 4c theory,
we employed an atom-pair approximation where all integrals
over the atom-centered small-component basis functions XS

are discarded unless the bra and ket basis pairs share the same
origin, i.e., [XS

AXS
B |X

S
CXS

D]δABδCD.. Here, δ is the Kronecker
delta function over atomic centers A, B, C, and D.

The elements βji of the Rosenfeld tensor were calculated
using Eq. (10) from three simulations where the molecules
were perturbed by external electric fields in directions x, y, and
z. The amplitude of the delta function perturbation was in each
simulation κi = 0.0001 a.u., i ∈ {x, y, z}. The time evolution
was carried out for 30 000 time steps of length 0.15 a.u. (0.0036
fs) which corresponds to a total simulation time of approxi-
mately 109 fs and frequency-domain resolution 0.0014 a.u.
(0.038 eV). Convergence thresholds for the microiterations in
the Magnus propagator were set to 10−6. The transformation
to the frequency domain was performed by the discreet Fourier
transformation utility in the SciPy package.106 The final spec-
tra were broadened by a damping factor γ = 0.004 a.u. [see
Eq. (8)].

IV. RESULTS AND DISCUSSION

We demonstrate the use of relativistic electron dynam-
ics for the calculation of chiroptical properties of a series of
dimethylchalcogeniranes C4H8X, where X = O, S, Se, Te,
Po, Lv (see Fig. 1). Dimethyloxirane is a prototypical chiral
molecule used as a benchmark system for chiroptical proper-
ties, whereas dimethylthiirane and other heavier analogs were
selected to determine the effect of relativistic treatment on the
spectra and to assess the performance of X2C and RI-J accel-
eration. As a spectral function, we plot the isotropic value of
the Rosenfeld tensor

S(ω) =
1
3

∑
i

βii(ω). (32)

We first investigate the performance of the RI-J technique
in the context of time-dependent relativistic methods by cal-
culating the ECD and ORD spectra of dimethyltelirane with
and without the RI-J approximation. The final spectra obtained
with the 4c Hamiltonian are reported in Fig. 2, whereas corre-
sponding results for the X2C Hamiltonian, that resembles the
reference 4c data, are available in the supplementary material
(Fig. 1). Visual inspection of the lines in Fig. 2 shows per-
fect agreement between the pairs of 4c and RI-J 4c spectra

FIG. 1. Structural formula of (2R, 3R)-2,3-dimethylchalcogenirane C4H8X
(X = O, S, Se, Te, Po, Lv).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022844
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FIG. 2. The comparison of 4c ECD and ORD spectra (in atomic units) of
the Te-based system calculated with and without the RI-J acceleration. The
simulation proceeded for 15 000 time steps of length 0.15 a.u.

in the valence region. However, it is desirable to quantify this
agreement. In time-independent RI-J calculations, it is cus-
tomary to assess the RI-J by evaluating the energy difference
per atom:83 ∆E = |Eexact −ERI−J|/Natom. Here, we extended this
concept to the time domain by time-averaging of the energy
error function ∆E,

∆E(t0, tmax) ≡
1

tmax − t0

∫ tmax

t0

|Eexact(t) − ERI-J(t)|
Natom

dt, (33a)

≈
1

nsteps

nsteps∑
j=1

|Eexact(tj) − ERI-J(tj)|

Natom
. (33b)

Equation (33a) thus defines the difference between the exact
energy per atom and its RI-J approximant over a whole interval
of propagation from t0 to tmax. Since the propagation is per-
formed in a series of discrete time steps, Eq. (33b) is used in
practice. For the simulation that yields to the spectra on Fig. 2,
∆E(0 a.u., 2250 a.u.) is equal to 1.4·10−6 a.u., which agrees
with∆E observed in the static case. A summary of∆E(t0, tmax)
for the entire dimethylchalcogenirane series as obtained from
the first 10 000 time steps is listed in Table I. In all cases, the
time-averaged energy error remains sufficiently small and RI-J
typically affects energies by only 10−6 a.u. per atom, regardless
of the relativistic Hamiltonian used.

Since the main quantities of interest in RT-TDDFT prop-
erty calculations are frequency-dependent spectral functions,

∆E(t0, tmax) may not be the most suitable quantity to mea-
sure the accuracy of RI-J. Therefore, we extended the concept
of averaged energy error functions from the time domain to
the frequency domain by introducing the following spectral-
function error:

∆S(ω0,ωmax) ≡
1

ωmax − ω0

∫ ωmax

ω0

|Sexact(ω) − SRI-J(ω)|
Natom

dω,

(34a)

≈
1

nsteps

nsteps∑
j=1

|Sexact(ωj) − SRI-J(ωj)|

Natom
, (34b)

where again, Eq. (34a) is the definition for an ideal continuous
case, whereas Eq. (34b) is its discretized variant used in prac-
tice. The values of ∆S(ω0,ωmax) for ECD and ORD spectra
presented on Fig. 2 are∆SECD(0 eV, 12 eV) = 1.3·10−4 a.u. and
∆SORD(0 eV, 12 eV) = 4.1·10−4 a.u., respectively. A summary
of ∆S(ω0,ωmax) for the entire dimethylchalcogenirane series
as obtained from the first 10 000 time steps is listed in Table I.

Encouraged by these results, we applied the RI-J acceler-
ated simulations to the remaining systems. Graphs in Fig. 3
show how ECD spectra obtained from non-relativistic and
relativistic methods differ across the series. While there is
practically no difference for O and S (depicted in the supple-
mentary material), the differences become noticeable starting
with Se and Te. For the Po- and Lv-substituted systems, the
1c results cannot be considered even as an approximation of
the relativistic results. Particularly, for the Po system, the 1c
spectra resemble the mirror image of the relativistic spectra
in a region from approximately 4.5 to 7 eV meaning that an
assignment of absolute configuration just from this spectral
region would be wrong. The result for the Po system demon-
strates the possibility of 1c and 4c spectra looking like mirror
images, a phenomenon that can span over a larger spectral
range for a different system making 1c calculations unsuit-
able for interpreting ECD measurements in molecules where
relativistic effects are prominent. Moreover, Fig. 3 shows that
the X2C approach reproduces the reference 4c results surpris-
ingly well across the entire series with only minor differences
for the heaviest elements. Similar conclusions can be drawn
about the ORD spectra, as supported by the figures available
in the supplementary material.

TABLE I. Assessment of the accuracy of the RI-J approach in the relativistic two-component (2c) and four-
component (4c) RT-TDDFT calculations of the chiroptical ECD and ORD spectra of dimethylchalcogeniranes
C4H8X (X = O, S, Se, Te, Po, Lv) using the energy error function of Eq. (33b), ∆E(t0, tmax), and the spectral
error functions of Eq. (34b), ∆SECD(ω0,ωmax) and ∆SORD(ω0,ωmax). All results are reported in atomic units
and were obtained from the first 10 000 time steps of length 0.15 a.u. that corresponds to the total simulation time
tmax ' 36.3 fs. The maximum spectral frequency ωmax was set to 0.45 a.u. ' 12.2 eV.

∆E(0 fs, 36.3 fs) ∆SECD(0 eV, 12.2 eV) ∆SORD(0 eV, 12.2 eV)

Heteroatom 4c 2c 4c 2c 4c 2c

O 2.7 · 10�6 2.7 · 10�6 2.4 · 10�4 6.7 · 10�5 1.9 · 10�4 6.7 · 10�5

S 2.6 · 10�6 3.9 · 10�6 2.7 · 10�4 1.2 · 10�4 3.0 · 10�4 1.1 · 10�4

Se 3.4 · 10�6 3.5 · 10�6 5.1 · 10�4 9.0 · 10�5 5.1 · 10�4 8.8 · 10�5

Te 1.4 · 10�6 1.6 · 10�6 1.3 · 10�3 9.7 · 10�5 1.5 · 10�3 9.7 · 10�5

Po 7.9 · 10�8 1.5 · 10�6 4.0 · 10�3 5.4 · 10�3 4.0 · 10�3 4.1 · 10�3

Lv 6.5 · 10�8 1.7 · 10�6 5.3 · 10�3 5.2 · 10�5 5.2 · 10�3 5.5 · 10�5

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022844
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022844
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FIG. 3. The comparison of 1c, 2c (X2C), and 4c (DC) ECD spectra (in atomic
units) of dimethylchalcogeniranes computed using the PBE functional with
RI-J acceleration. The corresponding spectra are labeled by the chemical sym-
bol of the heteroatom. The ECD spectra of lighter analogs and all ORD spectra
can be found in the supplementary material.

Finally, to assess the acceleration of RT-TDDFT achieved
by the introduction of the RI-J technique, we report in Table II
the average time per microiteration of the propagation solver.
These values were obtained from the first 50 time steps (each
time step required on average approximately 3 microitera-
tions) and the achieved accelerations range from 2.1 for the

TABLE II. Wall-clock times per microiteration (in s) and achieved accel-
erations for the relativistic electron dynamics simulations with 4c and X2C
Hamiltonians using exact four-centre integrals or the RI-J technique. The
accelerations are reported in parentheses. The calculations were performed
with OpenMP parallelization on a single node equipped with a dual-socket
Intel Xeon processor (E5-2680v3, 2.5 GHz) with 12 CPU cores per socket.

4c X2C

Heteroatom Exact RI-Ja Exactb RI-Jc

O 11.0 5.9 (1.9) 1.4 (7.7) 0.8 (1.9)
S 12.4 6.2 (2.0) 1.6 (7.6) 0.8 (2.0)
Se 15.7 7.1 (2.2) 2.1 (7.6) 1.0 (2.1)
Te 23.4 9.1 (2.6) 3.1 (7.6) 1.3 (2.3)
Po 42.7 11.6 (3.7) 4.9 (8.7) 1.8 (2.7)
Lv 50.6 12.7 (4.0) 5.7 (8.8) 2.2 (2.7)

aAcceleration calculated as the time ratio of exact vs. RI-J for 4c.
bAcceleration calculated as the time ratio of 4c vs. X2C for exact J.
cAcceleration calculated as the time ratio of exact vs. RI-J for X2C.

X2C Hamiltonian of C4H8Se to 4.0 for the 4c Hamiltonian
of C4H8Lv. Note that these values do not reflect the actual
acceleration associated with the evaluation of the Coulomb
term but rather refer to the whole microiteration speed-up that
also involves a diagonalization. Since the diagonalization step
dominates in some cases, the overall effectiveness of RI-J may
be reduced within RT-TDDFT when compared to the time-
independent regime. However, a positive observation is that
for both relativistic Hamiltonians, larger systems benefit more
from RI-J. This trend is more pronounced for the 4c Hamilto-
nian, where the calculation of the two-electron contribution
is by far the most time-consuming step. Moreover, orbital
basis-function products over both the large and small com-
ponent basis are fitted by an identical auxiliary basis set. The
observed acceleration when going from 4c to X2C ranges from
7.6 to 8.8 and agrees with our previous findings.62 The overall
acceleration provided by the combination of the X2C and RI-J
methodologies ranges from 14.3 to 23.5 for the systems studied
when compared to the full 4c treatment, without compromis-
ing the accuracy of final spectra. These results suggest that
one-particle X2C electron dynamics with RI-J acceleration is
a viable and promising method for calculations of chiroptical
spectra in the valence region.

V. CONCLUSIONS AND PERSPECTIVES

We have presented an implementation of relativistic
Liouville–von Neumann electron dynamics based on 4c
Dirac–Coulomb and 2c X2C Hamiltonians and its applica-
tion to the prediction of chiroptical spectra via the analysis of
time-dependent induced magnetic dipole moments. The imple-
mentation was further enhanced by the resolution-of-identity
approximation for the Coulomb term (RI-J), a relativistic for-
mulation of which has been presented for the first time in terms
of complex quaternion algebra. The proposed methodology
was assessed on the dimethylchalcogenirane series, C4H8X
(X = O, S, Se, Te, Po, Lv), and it was observed that while the
RI-J alone offers a speedup at least of a factor of two, the com-
bination of the X2C Hamiltonian and RI-J can lead to almost
25-fold acceleration compared to the full 4c treatment. The RI-
J acceleration is observed to be increasing with system size in

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-022844
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the studied series, and the trend is expected to hold making the
methodology even more promising as one starts to consider
larger molecules.

The calculation for the dimethylchalcogeniranes showed
increasing importance of relativistic effects with increasing
atomic number. Most notably, for the Po system, the 1c ECD
spectrum was a mirror image of the relativistic spectrum in a
certain frequency region, highlighting the necessity of a rel-
ativistic treatment when interpreting the spectra of molecules
containing heavy elements. Furthermore, the X2C approach,
even in its simplest one-particle form, reproduced the refer-
ence 4c results surprisingly well across the entire series. All
these findings suggest that the RI-J-based relativistic electron
dynamics, in particular, when combined with the X2C Hamil-
tonian, is a viable and promising tool for the calculation of
chiroptical spectra in the valence region.

The methodology presented can be further extended by
introducing the RI approximation for the exchange term (RI-
K), allowing accelerated calculations also with hybrid DFT
functionals. In addition, chiroptical spectroscopy in X-ray
regions is another exciting area of research where relativis-
tic corrections are expected to play a significant role and this
line of investigation is currently pursued in our laboratory.

SUPPLEMENTARY MATERIAL

See supplementary material for molecular geometries,
auxiliary basis sets, and additional ECD and ORD spectra.
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73A. Gómez Pueyo, M. A. Marques, A. Rubio, and A. Castro, J. Chem.

Theory Comput. 14, 3040 (2018).
74P. Bader, S. Blanes, and N. Kopylov, J. Chem. Phys. 148, 244109 (2018).
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