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By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this
work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb
Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-
electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb
Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator
K, the K2

+ has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We
demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators
are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR
symmetry. By diagonalizing the operator K2

+ in the basis of Kramers-restricted Slater determinants, we introduce
the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number
associated with K2

+ has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians
for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of
methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to
define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog
of the spin contamination in the nonrelativistic domain.
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I. INTRODUCTION

In experimental and theoretical science, it is of great
importance to know the symmetry of the system studied. In
spectroscopy, the choice of the effective Hamiltonian, used
to fit the experimental data, is influenced (if not based)
by the symmetry of the system. Similarly, taking symmetry
into account in quantum computational science increases the
efficiency and stability of computational methods.

In this work, our attention points towards symmetries of
electronic systems in the absence of magnetic fields, while
excluding symmetries associated with external electric fields
such as point-group symmetry or translational symmetry given
by clamped nuclei. To this class of symmetries we consider, for
example, spin symmetry in nonrelativistic and time-reversal
symmetry [1,2] in both the nonrelativistic and the Dirac
four-component relativistic level of theory [3–5]. Here, the
following general rule applies: all symmetries present at the
higher level of theory appear also at lower level of theory or,
in other words, going from a lower to a higher level of theory
can lead to symmetry breaking.

Ideally, every study of a quantum system should use the
highest possible level of theory. However, in practical applica-
tions, it is common to restrict the type of Hamiltonian and the
representation of the wave function to make a given calculation
feasible. The decision factor usually is the energy scale in
combination with the accuracy needed for the problem under
investigation. This work is aimed at the domain of relativistic
quantum chemistry, and therefore we only consider theories
which include spin-orbit (SO) interaction nonperturbatively
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(two- or four-component) and partly theories without SO
interaction (nonrelativistic or scalar relativistic). A quantum
electrodynamics theory and other particle theories are beyond
the scope of this study.

The nonrelativistic electronic structure theory with spin
introduced ad hoc has been thoroughly investigated with re-
spect to electron correlation, system dynamics, spectroscopic
parameters, and the theory of spin itself has been worked
out in great detail [6–12]. Eigenfunctions and eigenvalues of
spin operators are well known and are successfully accommo-
dated in different spectroscopies [13–15]. Nevertheless, spin
symmetry is not appropriate for treating problems where SO
effects become non-negligible since, in this case, spin is no
longer a good quantum number. Although the time-reversal
operator commutes with Hamiltonians accounting explicitly
for SO coupling, it is an antilinear operator and therefore
does not have eigenvalues and eigenvectors. For this reason,
time-reversal symmetry has never played as important a role
in atomic and molecular spectroscopy as spin symmetry. The
same conclusions hold for the well-known generalization
of the time-reversal operator to the many-electron case
(constructed as a product of the one-electron time-reversal
operatorsK) [16,17]. Although the square ofK becomes linear
Hermitian operator and still commutes with the relativistic
many-electron Hamiltonian, the quantum number associated
with the operator contains very little information, as it is either
+1 or −1 depending on the even or odd number of electrons in
the system [16,17]. Therefore, even the K2 can not substitute
the role of the spin operators in relativistic theories.

Still, time-reversal (TR) symmetry has been shown to
simplify the evaluation of matrix elements [18–29] and
has been worked out in combination with double-group
symmetry [3,30–33]. Nevertheless, the lack of useful quantum
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numbers for the many-fermion open-shell wave function in the
framework of relativistic theories that account for spin-orbit
coupling remains an obstacle. In the works of Bučinský
et al. [34,35], a new operator K+, suitable for treating
open-shell systems, has been proposed. This operator has
originally been denoted as a pseudo-time-reversal operator.
However, in this work we use the name time-reversal generator
to emphasize the fact that it generates the TR operator
K in similar way as spin operators generate operators of
spin rotations. The operator K+ is constructed as a sum
of individual one-electron time-reversal operators and its
square produces quantum number with information which
supersedes the well-known counterpart K2. Eigenfunctions
(in the basis of Kramers-restricted Slater determinants) and
eigenvalues of theK2

+ operator have been presented previously
for cases with up to four unpaired electrons with all possible
Kramer determinants. However, these eigenfunctions were
built phenomenologically and were not orthonormalized.
Herein, we give additional insight into the relation between
the many-electron K and K+ operators. Furthermore, we
investigate the spectrum of the square of the time-reversal
generator K2

+ both for general wave functions and for the basis
of Kramers-restricted determinants. We show the commutation
relation between the Dirac-Coulomb Hamiltonian and the K2

+
operator, thus introducing a new quantum number associated
with K2

+. Finally, as one of the examples, we make a brief
connection to non-Kramers doublets involved more than a half
century in works related to Electron paramagnetic resonance
or Mössbauer spectroscopy [36–41], magnetism [42–44], or
conductivity theory [45–47].

The article is organized as follows. First, we give a
general summary on time-reversal symmetry in the relativistic
framework. We then define the time-reversal generator and
formulate the eigenproblem theorem of the K2

+ operator,
followed by Sec. IV where we prove this theorem. In Sec. V, we
show a paired structure of the eigenspectrum. Subsequently,
we discuss a new quantum number of the Dirac-Coulomb
Hamiltonian. Finally, a diagonalization method is employed
to obtain the Kramers configuration state functions of the K2

+
applied to cases with two (three) open shells. In Appendix I, we
briefly discuss the cases with four and five unpaired electrons.
In addition, we provide a simple FORTRAN program able to
generate eigenfunctions up to 10 open-shell fermions.

II. TIME-REVERSAL SYMMETRY

Many textbooks on quantum mechanics contain a de-
tailed discussion of time-reversal symmetry and its applica-
tions [3,16,17]. In the following section, we summarize some
of the well-known facts as a starting point for the discussion
of the time-reversal generator in Secs. III-VII.

The one-electron Dirac operator in an external scalar
potential V can be written in atomic units as [3–5]

Di = c�αi · �pi + βic
2 + Vi, (1)

where c is the speed of light, �α is the off-diagonal matrix
operator constructed of gamma matrices in their standard
representation �α = γ0 �γ , �p = −i �∇ is the momentum operator,

and β = γ0. The subscript i represents the action of the
operators on the ith electron.

The Dirac Hamiltonian (1) commutes with an one-electron
time-reversal operator Ki , which reflects the fact that the time-
dependent Dirac equation is invariant under time inversion

[Di,Ki] = 0. (2)

Fixing the arbitrariness in the phase of the time-reversal
operator to −i, Ki can be written as [2,3,20]

Ki = −i�y,iK0,i , (3)

where K0,i is the complex conjugation operator and �y,i is the
four-component spin y operator expressed via the Pauli matrix
σy as

�y =
(

σy 0
0 σy

)
. (4)

The time-reversal operator Ki is an antilinear unitary
operator (also called antiunitary) satisfying

Ki(c1ψ + c2φ) = c∗
1 Kiψ + c∗

2 Kiφ, (5)

K
†
i Ki = KiK

†
i = 1, (6)

where c1,c2 ∈ C and ψ,φ ∈ [L2(R3)]4 are four-spinors in the
Hilbert space with the inner product

〈ψ |φ〉 =
∫

ψ†φ dV. (7)

From the definition of an adjoint of antilinear operators

〈K†
i ψ |φ〉 = 〈ψ |Kiφ〉∗ (8)

it can be shown that the adjoint of the time-reversal operator
has the form

K
†
i = i�y,iK0,i , (9)

which is consistent with the unitary condition in Eq. (6).
The closed form for the electron-electron interaction in the

relativistic domain is not known, therefore, only approximate
expressions are used. The commonly applied extensions of
one-electron Dirac Hamiltonian to the many-electron case
are the Dirac-Coulomb H DC and Dirac-Coulomb-Breit H DB

Hamiltonians [48]

H DC =
N∑
i

Di +
N∑

i<j

1

rij

, (10)

H DB =
N∑
i

Di +
N∑

i<j

[
1

rij

− �αi · �αj

2rij

+ (�αi · �rij )(�αj · �rij )

2r3
ij

]
.

(11)

Here, N is the number of electrons, �ri is the position vector of
the ith electron, and rij = |�ri − �rj |.

The well-known extension of the one-electron time-reversal
operator (3) to the many-electron case [16,17] can be written
as

K =
N∏
i

Ki. (12)
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It can be shown that K is unitary in the sense of Eq. (C1) and
commutes with the Hamiltonians (10) and (11):

K†K = KK† = 1̂, (13)

[H DC,K] = 0, (14)

[H DB,K] = 0. (15)

These expressions reflect the fact that K corresponds to
a symmetry of the system described by the relativistic
many-electron Hamiltonians, namely, time-reversal symmetry.
However,K is an antilinear operator, and thus cannot in general
be represented as exponential of a linear Hermitian operator
O, i.e., K �= eiO. Therefore, time-reversal symmetry cannot
be directly associated with an observable quantity [3]. In
Sec. IV, we show how the operator K can be connected to
the exponential of an antilinear operator.

The square of any antilinear operator becomes a linear
operator, and in the case of K, the commutation relations (14)
and (15) of the original operator K are preserved. Moreover,
due to the simple relation between the one-electron time-
reversal operator and its adjoint

Ki = −K
†
i , (16)

K2 becomes a Hermitian operator. Thus, we can write

K2(c1	 + c2
) = c1 K2	 + c2 K2
, (17)

[H X,K] = 0 ⇒ [H X,K2] = 0, (18)

K2 = (K2)†, (19)

where the N -electron wave functions 	 and 
 belong to
the Fock subspace for N fermions, 	,
 ∈ S−H⊗N , H =
[L2(R3)]4, with inner product defined in Appendix A, X =
DC,DB and the operator S− antisymmetrizes a tensor. In
the following, capital Greek letters represent wave functions
from the Fock subspace S−H⊗N . Finally, utilizing the simple
relation for the one-electron time-reversal operator

K2
i = −1, (20)

it is straightforward to show that K2 has the form

K2 = (−1)N 1̂ (21)

with 1̂ being the identity operator in S−H⊗N .
Expressions (17)–(19) define conservation law for many-

electron relativistic systems, with operator of symmetry

eiθK2 = eiθ(−1)N 1̂. (22)

Note that this operator just changes the phase of wave
functions. The corresponding constant of motion

d

dt
〈	|K2|	〉 = 0 (23)

represents the fact that the wave functions do not change their
boson (+1) or fermion (−1) symmetry while evolving in time.
An equivalent statement is that Hamiltonians H DC and H DB

share eigenfunctions with the operator K2, giving rise to the
quantum number ±1 [16,17]:

HX	 = E	, (24)

K2	 = (−1)N	, (25)

where X = DC,DB. Although these are fundamentally impor-
tant observations, they are not as useful in spectroscopy as spin
symmetries in the many-electron nonrelativistic domain.

In the next section, we define and describe some properties
of the recently proposed operator K2

+ [34,35], and consider
in details its relation to K. Unlike the K2 operator, it has
the potential to supplement the role of spin symmetry in the
relativistic domain.

III. TIME-REVERSAL GENERATOR

Bučinský et al. [34,35] recently proposed the many-electron
operator

K+ =
N∑
i

Ki. (26)

The operator in Eq. (26) is antilinear, but unlike K it is not
unitary [for the definition of K†

+, see Eq. (C1)]:

K†
+K+ = K+K†

+ �= 1, (27)

thus, it does not represent a symmetry operation. However, as
it is shown in Sec. IV, it is connected to K through

K = e
π
2 K+ . (28)

This exponential mapping is in some aspects similar to
the standard relation between a unitary operator U and
the corresponding Hermitian operator O, U = eiO. If such
operators commute with the Hamiltonian, the symmetry and
conservation law of the system are defined by U and O,
respectively. Thus, we call the operator K+ a generator of
the time-reversal operator K, in analogy to the elements of the
Lie algebra being infinitesimal generators of the Lie group.
Unfortunately, K+ is still an antilinear operator, and it can
therefore not be associated with an observable quantity (it
is not diagonalizable) even though it commutes with the
Dirac-Coulomb Hamiltonian

[H DC,K+] = 0, (29)

[H DB,K+] �= 0. (30)

For completeness, we also note that K+ does not commutate
with the Dirac-Coulomb-Breit Hamiltonian. However, it can
be shown that its square is a linear Hermitian operator [utilizing
Eq. (16)] which still commutes with the Dirac-Coulomb
Hamiltonian:

K2
+(c1	 + c2
) = c1 K2

+	 + c2 K2
+
, (31)

[H DC,K+] = 0 ⇒ [H DC,K2
+] = 0, (32)

K2
+ = (K2

+)†. (33)
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Therefore, it corresponds to an observable and as it turns out
it has a much richer eigenvalue spectrum than K2 [Eq. (25)].
In Sec. IV, we prove the following eigenvalue theorem:

K2
+	 = −k2	, k ∈ N0,

odd N ⇔ odd k, (34)

even N ⇔ even k.

Here, N refers to the total number of electrons in a system.
When constructing the eigenfunction 	 of K2

+ as a specific
linear combination of Slater determinants, where each deter-
minant is composed of Kramers-restricted molecular orbitals
(see Sec. VII), we observe that these eigenfunctions have a
more refined eigenvalue spectrum and degeneracy

K2
+	(N,NO ) = −k2	(N,NO ),

odd N ⇔ k = 1,3, · · · ,NO, (35)

even N ⇔ k = 0,2, · · · ,NO,

where NO is the number of unpaired electrons (open shells).
Note that in Eqs. (34) and (35), as well as in the following

discussion, we omit the index k for the eigenfunction 	k to
simplify the notation. However, the reader should keep in
mind that eigenfunctions 	 always associate with a specific
eigenvalue −k2.

IV. EIGENSPECTRUM OF K2
+ OPERATOR

In this section, we prove the eigenvalue theorem (34) and
establish the relation between the many-electron operators K
[Eq. (12)] and K+ [Eq. (26)].

Since the operators K2
+ and K2 commute

[K2
+,K2] = 0 (36)

and K2 is just a scaled identity operator [Eq. (21)], both
operators share the same set of eigenfunctions

K2
+	 = κ	, (37)

K2	 = (−1)N	. (38)

Here, the eigenvalue κ is considered an unknown real number.
In the following, we show that the form of eigenvalues κ

[Eq. (34)] is a direct consequence of expressions (37) and (38).
Defining eθKi through the Taylor series expansion and

utilizing repeatedly the property of the one-electron time-
reversal operator (20), we can write (see Appendix B)

eθKi = cos(θ ) + Ki sin(θ ). (39)

Choosing θ = π/2 or θ = π , we get

e
π
2 Ki = Ki, (40)

eπKi = −1. (41)

Employing Eq. (40) and the commutation relation
[Ki,Kj ] = 0 in a many-fermion case, we can rewrite the
time-reversal operator (12) as

K =
N∏
i

Ki =
N∏
i

e
π
2 Ki = e

π
2

∑N
i Ki . (42)

As a result, we obtain the relation (28) for many-fermion
operators

K = e
π
2 K+ (43)

and similarly for their adjoint

K† = e
π
2 K

†
+ . (44)

Multiplying the last two equations and realizing that
K†

+ = −K+ [see Eq. (16)], the unitarity of K can readily be
obtained.

We now turn our attention to the square of the time-reversal
operator K:

K2 = eπK+ (45)

since it provides us with the link between the eigenvalues of
K2 and K2

+ operators. Applying Eq. (37), we obtain

eπK+	 =
(

1 + πK+ + π2

2!
K2

+ + · · ·
)

	

=
(

1 + π2

2!
κ + π4

4!
κ2 + · · ·

)
	

+
(

π + π3

3!
κ + π5

5!
κ2 + · · ·

)
K+	, (46)

and Eq. (38), we get

eπK+	 = K2	 = (−1)N	. (47)

Combining the last two equations, we can write

(−1)N	 =
(

1 + π2

2!
κ + π4

4!
κ2 + · · ·

)
	

+
(

π + π3

3!
κ + π5

5!
κ2 + · · ·

)
K+	. (48)

It is worth to examine two possibilities of the action of K+
on the wave function 	:

K+	 = 0, (49)

K+	 ≡ 
. (50)

In the first case, by substituting Eq. (49) into Eqs. (37) and (48),
we immediately see that Eq. (49) is satisfied only for boson-
type wave functions (even number of electrons)

K+	 = 0 ⇒ κ = 0 ⇒ (−1)N	 = 	. (51)

In the second case, it is possible to show that the wave function

 is orthogonal to 	, but since K+ is not unitary, 
 is not
normalized to one (for proof, see Appendix C):

〈	|
〉 = 0, (52)

〈
|
〉 = −κ. (53)

Integrating Eq. (48) with 〈	| and 〈
| we get two expres-
sions

(−1)N = 1 + π2

2!
κ + π4

4!
κ2 + · · · , (54)

0 = πκ + π3

3!
κ2 + π5

5!
κ3 + · · · . (55)
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Since κ is an eigenvalue of a Hermitian operator it must be real,
and we can therefore examine κ being a positive or a negative
real number. For this purpose, we use the ansatz κ = k2 and
κ = −k2, respectively.

In the case of κ = k2, we get from Eqs. (54) and (55)

(−1)N = cosh(πk), (56)

0 = k sinh(πk), (57)

which is satisfied only for k = 0 and even number of electrons
N . More interesting is the case of κ = −k2, where we get

(−1)N = cos(πk), (58)

0 = k sin(πk), (59)

which is satisfied for integer numbers (k ∈ Z) with the
following rule:

odd N ⇔ odd k,

even N ⇔ even k.
(60)

We can further restrict k to positive integers including zero
k ∈ N0 since both positive and negative k produce the same
eigenvalues κ . Thus, we have proved the theorem (34).

V. PAIRED EIGENFUNCTIONS OF THE K2
+ OPERATOR

In Sec. IV, we have seen that the time-reversal generator
when acting on normalized wave functions 	 produces a non-
normalized wave function 
 [see Eqs. (50) and (53)]. By
choosing the definition in Eq. (50) to

K+	 ≡ k	̃ ⇒ 〈	̃|	̃〉 = 1 (61)

such that k > 0 and −k2 is the eigenvalue of 	 defined in
Eq. (34), then 	̃ is a normalized wave function. Applying
operator K+ on Eq. (61) and employing Eq. (34) we get

K+	̃ = −k	. (62)

Note that the choice of right-hand side in Eq. (61) fixes the
relative phase of wave functions 	 and 	̃. The relations (61)
and (62) between 	 and 	̃ have been observed previously for
Kramers-restricted Slater determinants [35].

The wave functions 	 and 	̃ are normalized, orthogonal,
and share the same eigenvalue (see Appendix C)

K2
+	 = −k2	,

K2
+	̃ = −k2	̃.

(63)

The only exception arises for k = 0, for whichK+	 is zero and
thus 	̃ is not uniquely defined. Nevertheless, due to Eqs. (50)
and (53), we can change the implication in expression (51) to
an equivalence

[K+	 = 0 ⇔ k = 0 ] ⇒ (−1)N	 = 	. (64)

As a result, for k �= 0 the eigenspectrum of K2
+ is at least

two times degenerate, where Eqs. (61) and (62) describe the
connection between these degenerate wave functions. The pair
structure (61)–(63) is similar to the Kramers pairs arising from
the time-reversal symmetry operator K, defined as

K	 ≡ 	. (65)

From the form of the K2 operator (21), it is clear that 	 has
the same eigenvalue as 	 and because K is unitary, 	 remains
normalized. Indeed, there is a close connection between these
two paired structures (see Appendix D), where for k = 0

K+	 = 0 ∧ 	 = 	 (66)

and for k �= 0(
cos

(
π
2 k

)
sin

(
π
2 k

)
− sin

(
π
2 k

)
cos

(
π
2 k

))(
	

	̃

)
=

(
	

	̃

)
. (67)

In addition, because k is an integer, we arrive at the following
two cases:

even k ⇒ cos
(π

2
k
)(

	

	̃

)
=

(
	

	̃

)
,

odd k ⇒ sin
(π

2
k
)(

	̃

−	

)
=

(
	

	̃

)
.

(68)

The sine and cosine functions change only the sign of the wave
functions, and can be ignored in the following discussion.
Based on Eqs. (68), we conclude that for boson systems (even
k and N ), the time-reversal operator produces the same wave
function and for a fermion system (odd k and N ), 	 and
	̃ are equal. In other words, the wave function 	̃ in the
eigenspectrum of K2

+ can be reached by operating both with
K+ and K in the fermion case, but only with the K+ operator
in the boson case.

VI. QUANTUM NUMBER OF THE MANY-ELECTRON
DIRAC-COULOMB HAMILTONIAN

In the case of infinite-dimensional Hilbert spaces, two
operators which commute do not in general produce the
same set of eigenfunctions, and therefore wave functions
	 in Eq. (34) are not necessarily eigenfunctions of the
Dirac-Coulomb Hamiltonian, despite of the commutation
relation (32). The existence of a common set of degenerate
eigenfunctions of two commuting operators must be proved
for each case separately. For example, the K2 operator has
the very simple form (21), and thus it is easy to see that
it shares eigenfunctions with the many-electron relativistic
Hamiltonians [Eqs. (24) and (25)] and K2

+ operator [Eqs. (37)
and (38)].

The form of the K2
+ is not as trivial as K2, and the proof

that the former operator shares eigenfunctions with the Dirac-
Coulomb Hamiltonian is not known to the authors, despite
the fact that they commute (32). However, if two operators
commute in finite-dimensional Hilbert space it can be shown
that they automatically share the same set of eigenvectors.
Fortunately, this can be utilized for K2

+ and H DC operators
when represented in Fock subspace F (M,N ) (subspace of
S−H⊗N ):

[HDC,K2
+] = 0, (69)

where a finite-dimensional basis in F (M,N ), used to represent
the operators in Eq. (69), contains all Kramers-restricted Slater
determinants (KRSD) obtained by distributing N electrons
among M four-spinors. The proof of relation (69), which
assumes the use of an orthonormal restricted kinetically
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balanced basis [49] to represent four-spinors, is given in
Appendix E. Finally, we can conclude that commutation
relation (69) leads to a new quantum number (34) for solutions
of the Dirac-Coulomb Hamiltonian.

In the nonrelativistic theory, multiconfiguration post-
Hartree-Fock methods often utilize linear combination of
Slater determinants (configuration state functions [50]) as
many-electron basis. These functions account for spin symme-
try of the one-component Hamiltonians (being eigenfunctions
of spin operators), potentially reducing the computational cost
and simplifying the analysis of the solutions. In the relativistic
domain, the spin symmetry is broken but since K2

+ and HDC

share the same set of eigenvectors, the relativistic counterpart
of configuration state functions (CSF) can be defined using
eigenvectors of the K2

+ operator instead. We denote these
functions as Kramers configuration state functions (KCSF)
and discuss their construction in Sec. VII. The biggest potential
advantage of these functions as a many-electron basis lies in the
ability to predict the structure of the matrix representation of
the Dirac-Coulomb Hamiltonian and other operators O in this
basis. This can give rise to selection rules (forbidden or allowed
transition) in the relativistic domain. However, a detailed study
of such rules is beyond the scope of this work. Herein, we show
only four simple examples.

As a first example, let us consider Hermitian time-reversal
antisymmetric operators

O† = O,

K†OK = −O. (70)

A typical example are operators responsible for interaction
with magnetic fields or operators for total spin. For an even
number of electrons, it holds that the Kramers-partner wave
function 	 is equal, up to a sign, to the wave function 	 [see
Eq. (68)]. It is then easy to show that the inner product of this
wave function with the operator O is zero (see Appendix F):

even N ⇒ 〈	|O|	〉 = 0. (71)

Although this expression holds for an exact wave function of
the Dirac-Coulomb Hamiltonian, it can be extended also to
KCSF. As a consequence, the diagonal elements of magnetic
field operators represented in the KCSF basis are strictly zero
for even-electron systems.

Another example is the connection of paired wave functions
	 and 	̃ [Eq. (61)] with eigenvalues of the Dirac-Coulomb
Hamiltonian. In the case of k �= 0, when combining the
commutation relation (69) with the definition of the paired
wave function (61) we obtain

HDCC = EC, (72)

HDCC̃ = EC̃, (73)

where C are expansion coefficients in the KRSD basis. The
paired eigenvectors thus share the same eigenvalue of both
Dirac-Coulomb and K2

+ operators [see also Eq. (63)]. In other
words, if an eigenvector of the HDC Hamiltonian is associated
with a nonzero quantum number −k2, its energy level is at least
two times degenerate. Consequently, if an eigenvector Cnd is
nondegenerate, then its quantum number −k2 is equal to zero,

which may happen only for systems with an even number of
electrons [Eq. (64)], i.e.,

HDCCnd = End Cnd ⇒ K+Cnd = 0 ⇔ even N.

(74)
Similarly, all energy levels are at least 2n times degenerate
(n ∈ N) for systems with an odd number of electrons, which
is a well-known fact easy to prove facilitating the time-reversal
operator K [18]. We can also translate these statements
to the nonrelativistic framework, where the energetically
nondegenerate states are allowed only for systems with an
even number of electrons, like for instance closed-shell or
open-shell singlet states.

As a third example, let us consider a doubly degenerate state
{	1,	2} of the Dirac-Coulomb Hamiltonian. According to the
above discussion, these states have the same eigenvalue −k2

and behave under time-reversal symmetry as [see Eq. (68)]

even N ⇒ K	i = ±	i, i = 1,2 (75)

odd N ⇒ K	1 = ±	2. (76)

The matrix representation of any Hermitian operator in the
basis of two wave functions, either degenerate as {	1,	2} or
nondegenerate, can be expanded as a linear combination of
the identity matrix and the Pauli matrices. For Hermitian time-
reversal antisymmetric operators (70), only Pauli matrices
contribute in the case of so-called Kramers doublet (76), and
only the Pauli y matrix contributes in the case of so-called
non-Kramers doublet (75) [36]. To prove the last statement,
use expressions (75) and (76) and techniques from Appendix F.

As a fourth example, we consider an even-electron system
and two arbitrary states of the Dirac-Coulomb Hamiltonian,
	1 and 	2. These two wave functions are related by time-
reversal symmetry via Eq. (75), thus, the expectation value of
an operator O [Eq. (70)] can be expressed as

〈	1|O|	2〉 = ±〈K	1|O|K	2〉 = ∓〈	1|O|	2〉∗. (77)

Therefore, if wave functions 	1 and 	2 transform under
time-reversal symmetry with the same (different) sign the
matrix element (77) is a pure imaginary (real) number. As
a result for systems with even number of electrons, the
matrix representations of operators responsible for magnetic
interactions are either pure real or pure imaginary numbers on
off diagonal (77) and zero on the diagonal (71). This can help
to design effective spin Hamiltonians used to characterize the
heavy-element containing systems.

Finally, we note that the previous findings also hold for
any approximate two-component Hamiltonians involving the
Coulomb operator for electron-electron interaction. All those
Hamiltonians commute with two-component version of the
K2

+ operator and share the same set of eigenvectors. Also
note that a time-reversal antisymmetric magnetic field operator
breaks the commutation relation (69) since the K2

+ operator
has no special commutation or anticommutation relation with
the magnetic field operator.

VII. KRAMERS CONFIGURATION STATE FUNCTIONS

In the previous section, we have argued that in order to relate
eigenfunctions of the Dirac-Coulomb and K2

+ operators and
thus introducing a new quantum number, we need to represent
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both operators in the Fock subspace F (M,N ). Moreover,
in any practical application of the quantum theory, the
discretization of the infinite-dimensional problems is essential.
In this section, we investigate the matrix representation of
the K2

+ operator in the Fock subspace F (M,N ) in more
details. The complete basis in F (M,N ) contains all Kramers-
restricted Slater determinants obtained by distributing N

electrons among M four-spinors. Since a one-electron operator
Ki , alike spin operators in the nonrelativistic theory, mixes
only associated Kramers pairs, when investigating the K2

+
eigenvectors it is sufficient to involve only determinants with
a constant number of excitations (i.e., constant number of
unpaired electrons). In other words, K2

+ has a block-diagonal
structure in the Fock subspace F (M,N ). Here, the reader is
referred to Appendix G, where the form of the K2

+ operator in
the second quantization formalism is employed to prove this
statement.

Let us consider a basis consisting of Kramers-restricted
Slater determinants with NO unpaired (open-shell) electrons
{
i(NO)}. Each Slater determinant is constructed from a set
of Kramers paired four-spinors [51]. To indicate the Kramers
paired structure of the spinor m, we use bar over the index (m).
The K2

+ operator for an N -electron system can be expressed
as

K2
+ = −N 1̂ + 2

N∑
i<j

KiKj (78)

and the definition of the matrix elements ofK2
+ in the {
i(NO)}

basis reads as

(K2
+)ij = 〈
i |K2

+|
j 〉. (79)

From the form of the K2
+ operator (78) and the discussion in

the previous sections, we can draw some general conclusions
about the properties of the matrix elements (79):

(i) The matrix elements of K2
+ operator in the basis of

Kramers-restricted wave functions are real numbers, as can
be easily seen from the second quantization form of K+ (see
Appendix G).

(ii) The diagonal elements have the simple form (see also
Ref. [34])

(K2
+)ii = −NO. (80)

(iii) The {
i(NO)} manifold can be split into two sets based
on the even (e) and odd (o) number of unpaired barred spinors
in the determinants {
e

i } and {
o
i }, respectively. The inner

product between these two sets is zero because K2
+ contains

either double KiKj or neutral KiKi = −1 contributions [see
Eq. (78)] 〈


e
i

∣∣K2
+
∣∣
o

j

〉 = 0. (81)

(iv) For system with an odd number of electrons it holds

odd N ⇒ 〈

o

i

∣∣K2
+
∣∣
o

j

〉 = 〈

e

i

∣∣K2
+
∣∣
e

j

〉
. (82)

To prove expression (82), one needs the connection between
even and odd sets


o
i = K
e

i (83)

techniques from Appendix C, the commutation relation
[K+,K] = 0, unitarity of K, and real-valued matrix elements
(K2

+)
ij

.

(v) For k �= 0, eigenvectors of 〈
x
i |K2

+|
x
j 〉 corresponding

to the even (x = e) or odd (x = o) set are related to each other
by the K+ operator (see discussion in Sec. V).

To build the Kramers configuration state functions one
needs to diagonalize the matrix representation of the K2

+
operator in the basis of Kramers-restricted Slater determinants
{
i(NO)}, where NO denotes a particular number of unpaired
electrons. Intermediate products K2

+
j for two and three
unpaired electrons are listed in Appendix H. Here, we only
summarize and discuss the final matrix elements (79).

For two unpaired electrons, the basis consists of
{
12,
1̄2̄,
12̄,
1̄2}, and the matrix elements of the K2

+
operator are

⎛⎜⎜⎝
12 1̄2̄ 12̄ 1̄2

12 −2 2 0 0
1̄2̄ 2 −2 0 0
12̄ 0 0 −2 −2
1̄2 0 0 −2 −2

⎞⎟⎟⎠. (84)

As discussed earlier, the matrix (84) is real and has a block-
diagonal structure with the diagonal elements equal to minus
the number of unpaired electrons. After diagonalization of the
matrix (84) we obtain the eigenvalues ei and eigenfunctions
	i in the following form:

	1 = 1√
2
(
12 − 
1̄2̄), e1 = −4,

	2 = 1√
2
(
12̄ + 
1̄2), e2 = −4,

	3 = 1√
2
(
12 + 
1̄2̄), e3 = 0,

	4 = 1√
2
(
12̄ − 
1̄2), e4 = 0. (85)

The wave functions in Eqs. (85) satisfy expressions (35), (71),
and (77). The paired structure for system with an even number
of electrons, as described in Sec. IV, can also be readily
verified:

K+	1 = 2	2,

K+	2 = −2	1,

K+	i = 0, i = 3,4

K	i = −	i, i = 1,2

K	i = 	i, i = 3,4. (86)

Thus, according to notation in Sec. IV we can write

	2 = 	̃1. (87)

For comparison, let us consider the three-electron open-
shell case. Because the matrix (79) has the block-diagonal
structure (81) with both (even and odd) blocks identical (82),
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we can focus only on the even set 〈
e
i |K2

+|
e
j 〉:

⎛⎜⎜⎝
123 1̄2̄3 1̄23̄ 12̄3̄

123 −3 2 2 2
1̄2̄3 2 −3 −2 −2
1̄23̄ 2 −2 −3 −2
12̄3̄ 2 −2 −2 −3

⎞⎟⎟⎠. (88)

Again, the matrix elements are real and the diagonal is equal
to minus the number of unpaired electrons. Diagonalization
of this matrix leads directly to the set of eigenvalues {−9,−1,

− 1,−1} with the corresponding eigenvectors (in columns)⎛⎜⎜⎝
1/2

√
3/2 0 0

−1/2
√

3/6 0
√

6/3
−1/2

√
3/6

√
2/2 −√

6/6
−1/2

√
3/6 −√

2/2 −√
6/6

⎞⎟⎟⎠. (89)

The triply degenerate eigenvectors in (89) have been chosen to
mimic as close as possible the nonrelativistic S2 eigenvectors
[see Eq. (96)]. To construct the eigenvectors for the odd mani-
fold one can apply either of the operatorsK+ andK [see Sec. V
and Eq. (83)]. Note that the eigenfunctions are orthonormal,
in contrast to the previously reported eigenfunctions with
eigenvalue −1 [35].

In Appendix I, we provide explicit expressions for the case
of four and five open shells and in Supplemental Material [53]
we make available a program for obtaining the appropriate
Kramers configuration state functions for cases of up to 10
unpaired electrons.

The discussion in Secs. III–VI is valid for systems de-
scribed by Dirac-Coulomb and one-component nonrelativistic
or scalar relativistic Hamiltonians. Since spin symmetry is
valid in the one-component domain we can compare the
eigenfunctions of both K2

+ and S2 [6] operators in more detail.
In one-component theory, the appropriate basis functions are
spin-restricted Slater determinants {
s} in which S2 has the
matrix form

(S2)ij = 〈

s

i

∣∣S2
∣∣
s

j

〉
. (90)

Considering the case of two open-shell electrons
{
s

12,

s
1̄2̄,


s
12̄,


s
1̄2} we obtain

⎛⎜⎜⎝
12 1̄2̄ 12̄ 1̄2

12 2 0 0 0
1̄2̄ 0 2 0 0
12̄ 0 0 1 1
1̄2 0 0 1 1

⎞⎟⎟⎠ (91)

with eigenvalues and eigenvectors

	1,1 = 
s
12, e1 = 2,

	1,−1 = 
s
1̄2̄, e2 = 2,

	1,0 = 1√
2
(
s

12̄ + 
s
1̄2), e3 = 2,

	0,0 = 1√
2
(
s

12̄ − 
s
1̄2), e4 = 0. (92)

To be consistent with the previous discussion, we have used
unbarred (α) and barred (β) notation for the one-electron
spinors. Comparing the eigenfunctions (92) and (85), we note
that while the singlet 	0,0 and the low-spin triplet 	1,0 wave
functions remain unchanged, we need to combine the high-spin

triplet wave functions 	1,1 and 	1,−1 to obtain the remaining
eigenfunctions in Eq. (85). Interestingly, this behavior was
already observed when representing one-electron operators in
the second quantization formalism. The standard excitation
operators in the nonrelativistic theory [52] are

T̂ 1,1
pq = −a†

paq̄ ,

T̂ 1,−1
pq = a

†
p̄aq,

T̂ 1,0
pq = 1√

2
(a†

paq − a
†
p̄aq̄),

Ŝ0,0
pq = 1√

2
(a†

paq + a
†
p̄aq̄). (93)

When these operators act on the two-electron closed-shell
Slater determinant, spin-adapted wave functions (92) are
created. On the other hand, the excitation operators used to
describe the one-electron Dirac operator [51]

Ê−
p̄q = (a†

p̄aq + a†
paq̄),

Ê+
p̄q = (a†

p̄aq − a†
paq̄),

Ê−
pq = (a†

paq − a
†
p̄aq̄),

Ê+
pq = (a†

paq + a
†
p̄aq̄) (94)

create Kramers configuration state functions (85) (up to a
normalization factor). For a definition of the creation and an-
nihilation operators, see the corresponding literature [51,52].
Moreover, the equivalent of the triplet operators T̂ [Eq. (93)]
in the nonrelativistic case, known as Cartesian components
of triplet excitation operators [52], produce wave functions
of K2

+ [Eq. (85)]. This reflects the fact that both K2
+ and S2

are appropriate operators for representing the symmetry in the
nonrelativistic theory.

In the case of three open-shell electrons, the matrix
representation of S2 has a block-diagonal form. Due to
the block-diagonal structure, it is possible to construct two
identical 4 × 4 matrices. In the same basis as K2

+ in Eq. (88),
one of the matrices reads as

⎛⎜⎜⎝
123 1̄2̄3 1̄23̄ 12̄3̄

123 15/4 0 0 0
1̄2̄3 0 7/4 1 1
1̄23̄ 0 1 7/4 1
12̄3̄ 0 1 1 7/4

⎞⎟⎟⎠. (95)

The eigenspectrum of this matrix is doubly degenerate
{15/4,15/4,3/4,3/4} permitting the freedom of unitary ro-
tation among the degenerate eigenvectors. It is customary
to choose the eigenvectors corresponding to eigenvalue 15/4
being simultaneously eigenvectors of Sz operator with eigen-
values 3/2 and 1/2. The remaining eigenvectors with Sz

eigenvalue 1/2 were selected in their conventional form [6]
(eigenvectors ordered in columns)⎛⎜⎜⎝

1 0 0 0
0 1/

√
3 0

√
6/3

0 1/
√

3
√

2/2 −√
6/6

0 1/
√

3 −√
2/2 −√

6/6

⎞⎟⎟⎠. (96)

Similarly to the case of two open-shell electrons, two of the
low-spin eigenvectors 	3/4,1/2 are identical to eigenvectors of

052104-8



NEW QUANTUM NUMBER FOR THE MANY-ELECTRON . . . PHYSICAL REVIEW A 94, 052104 (2016)

the K2
+ operator [see Eq. (89)]. On the other hand, to obtain

remaining eigenfunctions of Eq. (89) we need to combine
both low-spin 	15/4,1/2 and high-spin 	15/4,3/2 eigenvectors,
and hence break the Sz symmetry.

VIII. CONCLUSIONS

In this work, we have shown the connection between the
recently proposed time-reversal generator [34,35]

K+ =
N∑
i

Ki (97)

and the well-known unitary time-reversal operator K

K = e
π
2 K+ (98)

for the case of an N -electron system. Based on the rela-
tion (98), we have proved the eigenvalue theorem for the square
of the time-reversal generator K2

+ without the need of knowing
an explicit form of its eigenfunctions

K2
+	 = −k2	, k ∈ N0,

odd N ⇔ odd k, (99)

even N ⇔ even k.

Since K2
+ operator commutes with the Dirac-Coulomb (DC)

Hamiltonian in the basis of Kramers-restricted Slater determi-
nants

[HDC,K2
+] = 0, (100)

the eigenvalues −k2 represent a new quantum number for
the relativistic wave functions and give rise to a new type of
symmetry in relativistic many-particle systems described by
DC Hamiltonian

U ≡ eiθK2
+ . (101)

Furthermore, the time-reversal generator defines an or-
thonormal pair of wave functions {	,	̃} which are degenerate
eigenfunctions of both DC Hamiltonian and the K2

+ operator

K+	 ≡ k	̃. (102)

We have shown the connection between the pair {	,	̃}
and standard Kramers pair {	,	}. It turns out that while
for an odd-electron system 	 = ±	̃, for an even-electron
system 	 = ±	 and 	̃ �= 	. From these relations several
consequences arise and are related to matrix elements of
operators O responsible for interactions with magnetic fields
and to the degeneracy of energy levels for the Dirac-Coulomb
Hamiltonian. One especially interesting result holds for sys-
tems with an even number of electrons, where the matrix
elements of O in the basis of eigenfunctions (99) are zero
on the diagonal and either pure real or pure imaginary on the
off diagonal.

The general eigenvalue theorem (99) was confirmed ana-
lytically in the basis composed of Kramers-restricted Slater
determinants with further restriction on the quantum number k

to the number of the unpaired electrons. A program solving the
eigenvalue problem (99) is provided within the Supplemental
Material [53].

The symmetry and corresponding constants of motion
presented here offer a comparable amount of information about
the relativistic many-electron systems as the spin quantum
numbers in nonrelativistic theory. We therefore believe that
the new quantum number −k2 will prove useful in different
areas of quantum physics. There are several applications we
can foresee:

(i) Since we have now access to the quantum number −k2

[Eq. (99)], it is possible to measure the difference

−k2 − 〈	|K2
+|	〉 (103)

with 	 obtained from the Kramers-unrestricted solutions
of density functional theory (DFT) or Hartree-Fock theory
(HF). We call the measure (103) Kramers contamination, in
analogy to the spin contamination in nonrelativistic DFT and
HF theories, where it is evaluated as the difference of the
S(S + 1) spin quantum number and the inner product of spin-
unrestricted wave functions over S2 operator. The Kramers
contamination has already been studied in the framework of
two-component HF theory in the pilot work which introduced
the time-reversal generator (97) [34].

(ii) Characterization of spectra for heavy-element con-
taining compounds and selection rules based on symmetry
generated by the K2

+ operator.
(iii) Kramers configuration state functions (KCSF) as

relativistic analogs of the nonrelativistic configuration state
functions (known also as spin-adapted functions) [50].

(iv) Reduced computational effort associated with the
evaluation of operator matrix elements in the KCSF basis.

(v) Relation between the symmetry generated by the K2
+

operator and double-group symmetry.
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APPENDIX A

We assume that Kramers-restricted Slater determinants
{
i} constitute a complete basis in the Fock subspace S−H⊗N .
Thus, to define inner product of two wave functions 	,
 ∈
S−H⊗N , it is sufficient to define the inner product between
two determinants

〈
i |
j 〉 = 1

N !

N!∑
ζ,ξ=1

P
ζ

LP
ξ

R(−1)ζ+ξ 〈φi1|φj1〉 . . . 〈φiN |φjN 〉.

(A1)
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Here, the permutation operator PL (PR) acts on the indices of
bra (ket) functions, and the inner product of two one-electron
wave functions 〈φi |φj 〉 is defined in Eq. (7).

APPENDIX B

For clarity, we omit the index i in Ki in the following text.
For a real number θ we can then write

eθK = 1 + θK + θ2

2!
K2 + θ3

3!
K3 + θ4

4!
K4 + θ5

5!
K5 + · · ·

= 1 + θK + θ2

2!
(−1) + θ3

3!
(−K) + θ4

4!
+ θ5

5!
K + · · ·

=
(

1 − θ2

2!
+ θ4

4!
− · · ·

)
+ K

(
θ − θ3

3!
+ θ5

5!
− · · ·

)
= cos(θ ) + K sin(θ ), (B1)

where we have used repeatedly expression (20).

APPENDIX C

The definition of the adjoint of an antilinear operator in the
Fock subspace S−H⊗N reads as

〈O†�1|�2〉 = 〈�1|O�2〉∗. (C1)

Note, however, that Eq. (C1) is given in the perspective of
Appendix A. In that case, the definition of the adjoint of
operators K and K+ follows from the expression for the
adjoint of a one-electron antilinear operator (8). Furthermore,
it requires that the Kramers-restricted determinants constitute
a complete basis in S−H⊗N and are constructed from orthonor-
mal four-spinors.

Taking into account the above definition of an adjoint, from
Eqs. (16) and (26) it follows that

K†
+ = −K+. (C2)

Assuming that the wave function 
 is a normalized eigenfunc-
tion of K2

+

K2
+
 = κ
, 〈
|
〉 = 1, (C3)

and defining the action of the time-reversal generator

K+
 = 
̃, (C4)

the following statements are straightforward to show

〈
|
̃〉 = 〈
|K+
〉 = 〈K†
+
|
〉∗

= 〈
|K†
+
〉 = −〈
|K+
〉 = −〈
|
̃〉

⇒ 〈
|
̃〉 = 0, (C5)

〈
̃|
̃〉 = 〈K+
|K+
〉 = 〈K†
+K+
|
〉∗

= 〈
|K†
+K+
〉 = −〈
|K2

+
〉 = −κ〈
|
〉
⇒ 〈
̃|
̃〉 = −κ, (C6)

K2
+
 = K+
̃ = κ
,

K2
+
̃ = κK+


⇒ K2
+
̃ = κ
̃. (C7)

APPENDIX D

Starting from the connection between the K and K+
operators (43), using a Taylor expansion and eigenvalue
Eq. (34), we get

	 = K	 = e
π
2 K+	

=
[

1 − 1

2!

(π

2
k
)2

+ 1

4!

(π

2
k
)4

+ · · ·
]
	

+
[
π

2
− 1

3!

(π

2

)3
k2 + 1

5!

(π

2

)5
k4 + · · ·

]
K+	. (D1)

For k = 0, the wave function 	 and its Kramers pair 	 are
identical:

k = 0 ⇒ 	 = 	, (D2)

where we used K+	 = 0 [see Eq. (64)].
Considering the definition of 	̃ [Eq. (61)], we can rewrite

expression (D1) for k �= 0 as

	 =
[

cos
(π

2
k
)

1̂ + 1

k
sin

(π

2
k
)
K+

]
	

= cos
(π

2
k
)
	 + sin

(π

2
k
)
	̃. (D3)

We can repeat the same procedure for 	̃ since it shares the
same eigenvalue −k2 with 	. After obtaining

	̃ = cos
(π

2
k
)
	̃ − sin

(π

2
k
)
	, (D4)

we can combine this expression with Eq. (D3) to get the final
result in compact matrix form(

cos
(

π
2 k

)
sin

(
π
2 k

)
− sin

(
π
2 k

)
cos

(
π
2 k

))(
	

	̃

)
=

(
	

	̃

)
. (D5)

APPENDIX E

In this Appendix, we assume summation over repeated
indices, bold symbols stand for 2 × 2 or 4 × 4 matrices
depending on the context, and the following index notation
is employed: λ, τ , μ, and ν denote atomic basis functions and
p, q, r, s, and t are molecular orbital functions.

The orthonormal restricted kinetically balanced (RKB) [49]
basis can be expressed as

Xλ =
(

1 0
0 1

2c
�σ · �p

)
χτ

(
S

− 1
2

τλ 1 0

0 2c T
− 1

2
τλ 1

)
, (E1)

where χτ stands for a Gaussian-type scalar function and

Sλτ = 〈χλ|χτ 〉, (E2)

Tλτ = 〈χλ|p2|χτ 〉. (E3)

Due to to the fact that the RKB basis commutes with the
one-electron time-reversal symmetry (TS) operator

[K ,Xλ] = 0, (E4)

the matrix elements of the TS operator have the simple form

K λτ = 〈Xλ|K|Xτ 〉 = −i�yK0δλτ . (E5)
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The one-electron Dirac operator (1) in the basis (E1) can
be written as

Dλτ = 〈Xλ|D|Xτ 〉

=
⎛⎝(

c2δλτ + S
− 1

2
λμ VμνS

− 1
2

ντ

)
1 c S

− 1
2

λμ T
1
2

μτ 1

c T
1
2

λμS
− 1

2
μτ 1 −c2δλτ 1 + T

− 1
2

λμ WμνT
− 1

2
ντ

⎞⎠,

(E6)

where the external potential matrices are

Vλτ = 〈χλ|V |χτ 〉, (E7)

Wλτ = 〈�σ · �p χλ|V |�σ · �p χτ 〉. (E8)

That the matrices in Eqs. (E5) and (E6) commute is seen
by rewriting the matrix W as

Wλτ = 〈∇lχλ|V |∇lχτ 〉1 + iεlmn〈∇lχλ|V |∇mχτ 〉σ n (E9)

and realizing that

[−iσ yK0,i �σ ] = 0. (E10)

We can thus write the commutation relation between the one-
electron Dirac Hamiltonian and the time-reversal operator in
the orthonormal RKB basis as

[K ,D] = 0. (E11)

Since four-spinor molecular orbital coefficients

ϕp = XλCλp (E12)

act like a unitary transformation from an orthonormal atomic
orbital basis Xλ to an orthonormal molecular orbital basis ϕp

we can write

KpqDqr − DpqKqr = 0. (E13)

Thanks to the fact that the Coulomb electron-electron
interaction is represented by a real scalar operator and that
the time-reversal operator commutes with the RKB basis (E4),
the following identity holds:

Kpqgqrst − gpqstKqr + gsrpqKqt − Kpqgsrqt = 0, (E14)

where

gprst =
∫∫

r−1
12 ϕ†

p(1)ϕr (1)ϕ†
s (2)ϕt (2) dV12. (E15)

Due to the identities (E13) and (E14), the Dirac-Coulomb
Hamiltonian and the time-reversal generator commute in the
Fock subspace F (M,N ):

[Ĥ DC,K̂+] = 0, (E16)

where F (M,N ) contains all Kramers-restricted Slater de-
terminants obtained by distributing N electrons among M

four-spinors, and the operators Ĥ DC and K̂+ have the standard
form in the second quantization formalism [3,51].

Finally, we can write the commutation relations in the basis
of the Kramers-restricted Slater determinants {
i} since these
form the complete basis in F (M,N ):

(Ĥ DC)ij (K̂+)jk − (K̂+)ij (Ĥ DC)jk = 0. (E17)

APPENDIX F

For Hermitian time-reversal antisymmetric operators

O† = O, (F1)

K†OK = −O (F2)

and wave functions 	 for which it holds that

	 ≡ K	 = eiω	, (F3)

it follows

〈	|O|	〉 = 〈	|O|	〉 = 〈K	|O|K	〉
= 〈	|K†OK|	〉∗ = −〈	|O|	〉∗
= −〈	|O|	〉 (F4)

⇒ 〈	|O|	〉 = 0. (F5)

Note that eiω is an arbitrary phase factor and we have assumed
that O is a linear operator.

APPENDIX G

To express the operator K+ in the second quantization
formalism, we start from the general form of the one-particle
operators [51]

K+ =
∑
pq

[(K+)pq a†
paq + (K+)pq̄ a†

paq̄

+ (K+)p̄q a
†
p̄aq + (K+)p̄q̄ a

†
p̄aq̄]. (G1)

Utilizing the definition of the barred index φp̄ = Kφp, realiz-
ing that the square of the one-electron time-reversal operator
equals minus one [Eq. (20)], and that we are working with
orthonormal one-particle functions, we can write

K+ =
∑

p

(a†
p̄ap − a†

pap̄). (G2)

It is now easy to see that the operator in Eq. (G2) mixes only
determinants with the same number of unpaired electrons and
that doubly occupied Kramers pairs are ignored. Finally, we
note that the same observations hold for the square of the
time-reversal generator.

APPENDIX H

In the case of two open-shell electrons, the action of K2
+ on

the Slater determinant basis reads as

K2
+	12 = −2	12 + 2	1̄2̄,

K2
+	1̄2̄ = 2	12 − 2	1̄2̄,

K2
+	12̄ = −2	12̄ − 2	1̄2,

K2
+	1̄2 = −2	12̄ − 2	1̄2.

(H1)

For the case of three open-shell electrons, we have chosen
just the even manifold for our considerations since the odd
manifold can be easily constructed applying the time-reversal

052104-11
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operator K on the following expressions:

K2
+	123 = −3	123 + 2	1̄2̄3 + 2	1̄23̄ + 2	12̄3̄,

K2
+	1̄2̄3 = 2	123 − 3	1̄2̄3 − 2	1̄23̄ − 2	12̄3̄,

K2
+	1̄23̄ = 2	123 − 2	1̄2̄3 − 3	1̄23̄ − 2	12̄3̄,

K2
+	12̄3̄ = 2	123 − 2	1̄2̄3 − 2	1̄23̄ − 3	12̄3̄. (H2)

APPENDIX I

In the case of four unpaired electrons, the basis of determinants can be splitted into two separate independent branches of
matrix representation of TR generator squared

{
1234,
1̄2̄34,
1̄23̄4,
1̄234̄,
12̄3̄4,
12̄34̄,
123̄4̄,
1̄2̄3̄4̄} (I1)

and

{
1̄234,
12̄34,
123̄4,
1234̄,
1̄2̄3̄4,
1̄2̄34̄,
1̄23̄4̄,
12̄3̄4̄}. (I2)

The even (odd) basis contains exclusively determinants with even (odd) number of barred spinors.
For illustration we will consider the action of TR generator squared in the form

K2
+ = −41̂ + 2

∑
i<j

KiKj (I3)

on the following four determinants 
1234, 
1̄2̄34, 
1̄234, and 
1̄2̄3̄4:

K2
+
1234 = −4
1234 + 2
1̄2̄34 + 2
1̄23̄4 + 2
1̄234̄ + 2
12̄3̄4 + 2
12̄34̄ + 2
123̄4̄ + 0
1̄2̄3̄4̄,

K2
+
1̄2̄34 = +2
1234 − 4
1̄2̄34 − 2
1̄23̄4 − 2
1̄234̄ − 2
12̄3̄4 − 2
12̄34̄ + 0
123̄4̄ + 2
1̄2̄3̄4̄,

K2
+
1̄234 = −4
1̄234 − 2
12̄34 − 2
123̄4 − 2
1234̄ + 2
1̄2̄3̄4 + 2
1̄2̄34̄ + 2
1̄23̄4̄ + 0
12̄3̄4̄,

K2
+
1̄2̄3̄4 = +2
1̄234 + 2
12̄34 + 2
123̄4 + 0
1234̄ − 4
1̄2̄3̄4 − 2
1̄2̄34̄ − 2
1̄23̄4̄ − 2
12̄3̄4̄. (I4)

Thus, we will obtain the following matrix representation of the 〈
x |K2
+|
y〉 products for the even basis manifold:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1234 1̄2̄34 1̄23̄4 1̄234̄ 12̄3̄4 12̄34̄ 123̄4̄ 1̄2̄3̄4̄
1234 −4 2 2 2 2 2 2 0
1̄2̄34 2 −4 −2 −2 −2 −2 0 2
1̄23̄4 2 −2 −4 −2 −2 0 −2 2
1̄234̄ 2 −2 −2 −4 0 −2 −2 2
12̄3̄4 2 −2 −2 0 −4 −2 −2 2
12̄34̄ 2 −2 0 −2 −2 −4 −2 2
123̄4̄ 2 0 −2 −2 −2 −2 −4 2
1̄2̄3̄4̄ 0 2 2 2 2 2 2 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(I5)

with eigenvalues equal to

{−16,−4,−4,−4,−4,0,0,0}T (I6)

and the eigenvector coefficients (ordered in columns)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.35355339 0.60199155 0.00000000 −0.05524348 0.36681649 0.06127536 0.60927828 0.00503067

0.35355339 0.36496952 0.05988493 −0.02197086 −0.60226931 −0.24113491 0.23364026 −0.51211931

0.35355339 −0.06618721 0.28381790 −0.64415204 0.01161054 −0.29172449 0.23048191 0.48659522

0.35355339 0.00476227 −0.64487300 −0.28554088 −0.05081864 0.59413476 0.14515612 0.03055476

0.35355339 −0.00476227 0.64487300 0.28554088 0.05081864 0.59413476 0.14515612 0.03055476

0.35355339 0.06618721 −0.28381790 0.64415204 −0.01161054 −0.29172449 0.23048191 0.48659522

0.35355339 −0.36496952 −0.05988493 0.02197086 0.60226931 −0.24113491 0.23364026 −0.51211931

−0.35355339 −0.60199155 0.00000000 0.05524348 −0.36681648 0.06127536 0.60927828 0.00503067

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(I7)
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The odd basis has the following matrix representation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1̄234 12̄34 123̄4 1234̄ 1̄2̄3̄4 1̄2̄34̄ 1̄23̄4̄ 12̄3̄4̄
1̄234 −4 −2 −2 −2 2 2 2 0
12̄34 −2 −4 −2 −2 2 2 0 2
123̄4 −2 −2 −4 −2 2 0 2 2
1234̄ −2 −2 −2 −4 0 2 2 2
1̄2̄3̄4 2 2 2 0 −4 −2 −2 −2
1̄2̄34̄ 2 2 0 2 −2 −4 −2 −2
1̄23̄4̄ 2 0 2 2 −2 −2 −4 −2
12̄3̄4̄ 0 2 2 2 −2 −2 −2 −4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(I8)

with eigenvalues equal to

{−16, − 4, − 4, − 4, − 4,0,0,0}T (I9)

and the appropriate coefficients (ordered in columns)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.35355339 −0.60199155 0.00000000 0.05524348 0.36681649 −0.06127536 −0.60927828 −0.00503067

0.35355339 0.36496952 −0.05988493 −0.02197086 0.60226931 −0.24113491 0.23364026 −0.51211931

0.35355339 −0.06618721 −0.28381790 −0.64415204 −0.01161054 −0.29172449 0.23048191 0.48659522

0.35355339 0.00476227 0.64487300 −0.28554088 0.05081864 0.59413476 0.14515612 0.03055476

−0.35355339 0.00476227 0.64487300 −0.28554088 0.05081864 −0.59413476 −0.14515612 −0.03055476

−0.35355339 −0.06618721 −0.28381790 −0.64415204 −0.01161054 0.29172449 −0.23048191 −0.48659522

−0.35355339 0.36496952 −0.05988493 −0.02197086 0.60226931 0.24113491 −0.23364026 0.51211931

−0.35355339 −0.60199155 0.00000000 0.05524348 0.36681648 0.06127536 0.60927828 0.00503067

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(I10)
For the five open-shell electrons case (considering only the even barred basis manifold) we will obtain the following matrix

representation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12345 1̄2̄345 1̄23̄45 1̄234̄5 1̄2345̄ 12̄3̄45 12̄34̄5 12̄345̄ 123̄4̄5 123̄45̄ 1234̄5̄ 1̄2̄3̄4̄5 1̄2̄3̄45̄ 1̄2̄34̄5̄ 1̄23̄4̄5̄ 12̄3̄4̄5̄

12345 −5 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0
1̄2̄345 2 −5 −2 −2 −2 −2 −2 −2 0 0 0 2 2 2 0 0
1̄23̄45 2 −2 −5 −2 −2 −2 0 0 −2 −2 0 2 2 0 2 0
1̄234̄5 2 −2 −2 −5 −2 0 −2 0 −2 0 −2 2 0 2 2 0
1̄2345̄ 2 −2 −2 −2 −5 0 0 −2 0 −2 −2 0 2 2 2 0
12̄3̄45 2 −2 −2 0 0 −5 −2 −2 −2 −2 0 2 2 0 0 2
12̄34̄5 2 −2 0 −2 0 −2 −5 −2 −2 0 −2 2 0 2 0 2
12̄345̄ 2 −2 0 0 −2 −2 −2 −5 0 −2 −2 0 2 2 0 2
123̄4̄5 2 0 −2 −2 0 −2 −2 0 −5 −2 −2 2 0 0 2 2
123̄45̄ 2 0 −2 0 −2 −2 0 −2 −2 −5 −2 0 2 0 2 2
1234̄5̄ 2 0 0 −2 −2 0 −2 −2 −2 −2 −5 0 0 2 2 2
1̄2̄3̄4̄5 0 2 2 2 0 2 2 0 2 0 0 −5 −2 −2 −2 −2
1̄2̄3̄45̄ 0 2 2 0 2 2 0 2 0 2 0 −2 −5 −2 −2 −2
1̄2̄34̄5̄ 0 2 0 2 2 0 2 2 0 0 2 −2 −2 −5 −2 −2
1̄23̄4̄5̄ 0 0 2 2 2 0 0 0 2 2 2 −2 −2 −2 −5 −2
12̄3̄4̄5̄ 0 0 0 0 0 2 2 2 2 2 2 −2 −2 −2 −2 −5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(I11)

with eigenvalues being equal to

{−25,5 × (−9),10 × (−1)}T . (I12)

The matrix representation of K2
+ in the odd basis manifold (83) of the five open-shell case is identical to Eq. (I11) [see

Eq. (82)]. The eigenvectors of the five open-shell case are not shown for brevity. The interested reader might use the attached
FORTRAN code [53] to obtain eigenfunctions and eigenvalues of K2

+ for cases with up to 10 unpaired electrons.
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