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The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl
molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it
is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate ex-
perimental data. Our best estimates for the spin-rotation constants of 'H*Cl are Ccy = —53.914 kHz
and Cy = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab
initio value computed including the relativistic corrections, o (Cl) = 976.202 ppm, provides a new
absolute shielding scale; for hydrogen we find o (H) = 31.403 ppm (both at 300 K). Combining the
theoretical results with our new gas-phase NMR experimental data allows us to improve the accu-
racy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant,
including relativistic effects yields better agreement between experimental and computed values.
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. INTRODUCTION

The interaction of nuclear magnetic dipole moments with
a magnetic field supplies valuable information about molec-
ular structure. These interactions are the reason for the exis-
tence of the Nuclear Magnetic Resonance (NMR) spectra. Ina
molecule, the direct Zeeman interactions of the applied exter-
nal magnetic field with the nuclear dipole moments are mod-
ified by the electron density. The shielding of each nucleus
depends on the molecular electronic structure, and the differ-
ences in the local magnetic field are reflected in the chemical
shifts observed in NMR spectroscopy. The rotational spec-
trum is also affected by the nuclear magnetic moments; when
they interact with an effective magnetic field arising from the
molecular rotation, there is an additional splitting of the bands
in the spectrum.

In ab initio studies of molecular properties, these effects
are described using perturbation theory.'-?> The relevant spec-
troscopic parameters correspond to second-order molecular
properties, which in the perturbation expansion of the molec-
ular energy describe the terms bilinear in the nuclear magnetic
moment and either the magnetic field strength or the rotational
magnetic moment of the molecule. The computed parameters
— NMR shielding constants and spin-rotation constants —
can be used to predict and interpret the NMR and rotational
spectra, respectively.

The comparison of computed spin-rotation constants
with experiment is straightforward. In contrast, the shield-
ing constant describes, by definition, the shielding of a bare
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nucleus by all the electrons in a molecule, whereas the usu-
ally measured chemical shift describes the difference between
the shielding of a nucleus in the molecule of interest and
in a reference molecule. Thus, although calculated and ex-
perimental chemical shifts can be compared, to obtain abso-
lute shielding constants from experiment requires a different
approach.

The computed shielding constant consists of two contri-
butions, the so-called diamagnetic and paramagnetic terms.
The former corresponds to an expectation value, and once
a relatively accurate unperturbed wavefunction is available,
it is usually easy to determine. However, the calculation
of the paramagnetic contribution requires the solution of
linear response equations, and therefore this term is much
more complicated to calculate accurately. It was shown by
Ramsey® (for linear molecules) and by Flygare*> that the
paramagnetic contribution to the NMR shielding constant in
the nonrelativistic framework (computed with the gauge ori-
gin at the position of that nucleus) is proportional to the
electronic part of the spin-rotation constant. Therefore, an
approach that has been successfully applied to determine
absolute shielding constants (see, e.g., Ref. 6) is to add
the calculated diamagnetic term to the paramagnetic term
extracted from the experimentally measured spin-rotation
constant.

However, the proportionality relation proposed by
Ramsey® and Flygare*> is valid only in nonrelativistic per-
turbation theory, where both the paramagnetic contribution to
the NMR shielding constant (¢7) and the electronic part of
the spin-rotation constant (C¢) are represented by the angu-
lar momentum operator L. In four-component relativistic the-
ory, a” is represented by the relativistic electronic magnetic

© 2013 AIP Publishing LLC
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moment operator ji,

- 1. 0o
| ()

where ¢ is the vector composed of Pauli spin matrices,
whereas C¢ is represented by the electronic total angular mo-
mentum operator’

= - 1 /(60
Je—L14><4+5(06:> (2)

Further theoretical details can be found in Refs.7-9. Note that
ji, is an off-diagonal operator and therefore couples the large
and the small components of the four-component wavefunc-
tion, whereas J, is a purely diagonal operator. This different
coupling leads to a change in the physical mechanism of the
interactions and gives rise to relativistic corrections that are
different for NMR shielding constants and spin-rotation con-
stants. Although the different mechanisms were already dis-
cussed by Saue and co-workers,'%!! its quantitative estimate
was not known until very recently.!>!3 Surprisingly, the dif-
ference has a sizable effect on experimentally determined ab-
solute shielding scales, obtained indirectly through measure-
ments of nuclear spin-rotation constants, showing that the use
of Flygare’s relation may be inadequate and lead to an incor-
rect absolute shielding scale. For instance, Malkin et al.'? pre-
dicted a correction of about 1000 ppm to ''°Sn shielding con-
stants of 12SnX, (X =H, Cl, CH3). Similarly, Aucar et al. 13
demonstrated this breakdown in the HBr and HI molecules. In
this work we examine the role of different effects in the deter-
mination of spectroscopic parameters for the HCI molecule,
focusing on the breakdown of Flygare’s relation in the
relativistic domain.

Il. ABINITIO CALCULATIONS
A. Nonrelativistic approach

All the nonrelativistic calculations were performed us-
ing the coupled-cluster analytic linear response methods de-
veloped by Gauss and Stanton'*'> and implemented in the
CFOUR program.'® All the properties were computed at the
CCSD(T) (coupled-cluster singles-and-doubles with a nonit-
erative perturbative triples correction) level of approximation,
for the equilibrium geometry we have in addition estimated
the results at the CCSDT level.

We have used a sequence of uncontracted aug-cc-
pCVXZ basis sets and applied gauge-including atomic
orbitals (GIAOs'7!8). The largest basis set in this se-
quence, the uncontracted aug-cc-pCV5Z basis set,'” includes
21s13p9d7f5g3h functions for the Cl atom and 9s5p4d3f2g
for the H atom, leading to a total of 315 GTO’s. In addition,
at the equilibrium geometry r, = 1.2738767 A (optimised at
the CCSD(T) level with the uncontracted aug-cc-pCV5Z ba-
sis set) we have also estimated the results by applying basis
set extrapolations. We have applied two-point extrapolations,
separately for the Hartree—Fock (HF) and for the correlation
contribution to the shielding constants, in each case following
Ref. 20. Finally, we have also used for comparison the aug-
pcS-4?! basis set. As shown in Table I, the uncontracted aug-
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TABLEI. Correlation and basis set dependence of the equilibrium geometry
values; Cc; and Cy in kHz, o(Cl) and o (H) in ppm.

Cal Cu o (Cl) o(H)
aug-cc-pCV5Z2 results
HF —54.653 39.789  951.199  30.464
CCSD —51.891 40.164  961.265 30.689
CCSD(T) —51.464  40.341 962.744  30.730
CCSDT - CCSD(T), aug-cc-pCVTZ results
full triples® —0.234 0.038 —0.824 0.018
full triples® —0.234 0.038 —0.820 0.018
CCSD(T) results
aug-cc-pCVTZ? —51.316 41.289 963.056 31.057
aug-cc-pCVQZ? —51.456  40.595  962.710  30.816
aug-cc-pCV5Z? —51.464  40.341 962.744  30.730
extrapolated results®
TZ-QZ —51.321 40220  963.281 30.671
Qz-5Z —51.437  40.175  962.903 30.669
CCSD(T), aug-pcS-4 —51.570  40.322 962254  30.731

2Uncontracted aug-cc-pCVXZ basis set.
bContracted aug-cc-pCVTZ basis set.
¢TZ-QZ and QZ-5Z: extrapolation according to Ref. 20, see the text.

cc-pCV5Z, extrapolated and aug-pcS-4 results do not differ
significantly. Our nonrelativistic, equilibrium geometry val-
ues of o(Cl) are also in good agreement with another re-
cent CCSD(T) result extrapolated to the complete basis limit,
959.7 ppm.??

Additionally, we have estimated, using the uncon-
tracted aug-cc-pCVTZ basis set, the CCSDT-CCSD(T) dif-
ference, and we will in our discussion refer to this as the
“full triples” correction. For all properties, the values of
this correction obtained with a smaller, contracted aug-cc-
pCVTZ basis set, are practically identical to the values we
report.

The rovibrational effects have been evaluated at the
CCSD(T) level with the uncontracted aug-cc-pCV5Z basis
set. To compare the theoretical and experimental data we
need the values for the lowest rovibrational level for the spin-
rotation constants, and the values at 300 K for the shield-
ing constants. The corresponding results, that is, the zero-
point vibrational (ZPV) correction and the temperature effect,
are given in Table II. The calculated total effect for o(*Cl)
is slightly larger than an earlier estimate, —15.9 ppm.2* We
have determined also the rovibrational corrections for 'H*’Cl.
However, since the computed differences between the shield-
ing constants of *>CI and 3’Cl (~0.1 ppm at 300 K) are far
smaller than the residual errors in the calculations, we do not
analyse these differences.

B. Relativistic effects

The relativistic expressions defining the spin-rotation
constants were not known until very recently. In 2012
Aucar et al.” proposed a theory where the nuclei are consid-
ered as nonrelativisic particles while the electrons are treated
relativistically. More recently, Xiao and Liu’® (see also ref-
erences therein) developed a theory where the nuclei are
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TABLE II. A comparison of ab initio and experimental results; Cc; and
Cy in kHz, o(Cl) and o (H) in ppm.

Cal Cu a(Cl) o(H)
Equilibrium geometry values
CCSD(T),
aug-cc-pCV5Z? —51.464 40.341 962.744 30.730
Full triples® —0.234 0.038 —0.824 0.018
Relativistic® —0.026 2.548 31.819 0.841
Rovibrational effectsd

7PV —2.223 —0.425 —17.087 —0.263
300 K —0.591 —-0.023
Total® v=0 300 K

—53.914 42.672 976.202 31.403
Expt.f 54.00(15)  —42.32(70) (-)2 31.124(7)

2Uncontracted aug-cc-pCV5Z basis set.

bFull triples correction: CCSDT-CCSD(T), see the text and Table I.

“Relativistic correction: PBE, uncontracted pc-3 basis set, see the text.

dNonrelativistic results, 3Cl and 'H.

¢For both properties, rovibrational corrections to the relativistic contribution are in-
cluded: 0.033 kHz, 0.170 kHz, 0.141 ppm, and 0.101 ppm, respectively.

fSpin—rotation constants: Ref. 53 (different sign convention used); o (H): Ref. 48 (31.132
ppm in this work).

&We assume that for o (Cl) our ab initio value sets the absolute shielding scale.

described quasi-relativistically and the electrons relativisti-
cally; the same authors next described the theory for the spe-
cial case of linear molecules.”* Our implementation follows
the work of Aucar et al.” and its details will be published in
Ref. 8.

To estimate the relativistic effects on the NMR shielding
constants and spin-rotation constants, we have used the four-
component relativistic density functional theory (DFT) pro-
gram package ReSpect,? in particular modules for the cal-
culation of NMR shielding constants®>?’ and nuclear spin-
rotation constants.® The relativistic effects (see Table IT) were
estimated as the differences between four-component val-
ues obtained at the DFT level with the PBE functional®
and the corresponding nonrelativistic values. We have veri-
fied that the relativistic corrections computed with the PBE
and BP86?%3° functionals are very similar for both nuclei
and both properties. For numerical integration, an adaptive
grid with 19784 grid points was used. At both levels, rel-
ativistic and nonrelativistic, we used the uncontracted pc-3
([17s13p4d2f1g] Cl and [9s4p2d1f] H) basis set.>"3? Similar
results have been obtained with a smaller uncontracted pc-2
basis set. The calculations of NMR shielding constants were
performed using GIAOs, while in the calculations of nuclear
spin-rotation constants the gauge origin was placed at the
center of nuclear mass. The following nuclear magnetic mo-
ments were used: 2.79284734 uy for 'H and 0.8218743 UN
for 3C1.33

The relativistic DFT corrections to the spin-rotation con-
stants calculated in the present work (2.548 kHz for 'H and
—0.026 kHz for 3>Cl) are in good agreement with earlier esti-
mates obtained at the Hartree—Fock level of theory, 2.12 kHz
for 'H and —0.04 kHz for 3°CL.13

The relativistic theory for the calculation of NMR shield-
ing tensors has been known much longer and numerous cal-
culations of the relativistic effects on the shielding constants
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have been published (for recent and comprehensive reviews
see, e.g., Refs.34-36; in particular more than 25 results ob-
tained for the HCl molecule are discussed in Ref.34). Our
results are in good agreement with those obtained by Man-
ninen et al.’’ at the Hartree-Fock level of theory; the rela-
tivistic corrections estimated using Breit—Pauli perturbation
theory were 30.27 ppm for chlorine and 1.144 ppm for the
hydrogen shielding constants, respectively. The total o (Cl)
derived by adding the relativistic correction to the HF result,
983.0 ppm, is also in close agreement with a recent DKH2-
HF value, 984.1 ppm.*® Our best estimate for the total equi-
librium geometry value of the chlorine shielding constant,
993.739 ppm, is in good agreement with the result derived
applying the experimental spin-rotation constant and the rel-
ativistic mapping between the properties as discussed above,
995.61 ppm.*

lll. GAS PHASE NMR EXPERIMENT

All the experimental results reported in this paper were
obtained in the gas phase. NMR samples were prepared
according to our standard procedure described in Ref. 40.
We used pure hydrogen chloride (>99% HCI, Aldrich-
Sigma) with the natural abundance of chlorine isotopes and
helium-3 (>99.95% 3He, Isotec) without further purification.
Gas samples in cylindrical 4 mm o.d. ampoules contained
HCI (pressure range ~10-40 bars) with a small quantity of
helium-3 (=65 mbar). Liquid benzene-dg (99.96% CgDg,
Aldrich-Sigma) was applied for the external deuterium lock.
The 'H, 3°Cl, and ¥ClI frequencies were observed using
the BB-10 probe on a Varian INOVA-500 NMR spectrom-
eter with the following parameters: pulse 7/2 (=30 us),
acquisition time 2s ('"H) or 25 ms (¥Cl and *’Cl), scan
numbers approximately 100 for 'H and 10 000 for **Cl or
3CL. The *He NMR experiments were performed as de-
scribed earlier.*! The external magnetic field was stable,
By =11.758T.

The results of our experimental study, performed in a
constant magnetic field, are summarized by the plots in
Fig. 1. As shown, the decrease of the 3He resonance frequency
with HCI density is significant, and it comes almost exclu-
sively from the bulk susceptibility correction (BSC).** In con-
trast, the density dependence of the ¥Cl and *”Cl frequencies
are in the opposite direction showing the significant effects
due to intermolecular interactions. This means that the inter-
molecular effects in 3>Cl and 3’Cl NMR are much stronger
than the BSC parameter itself; the latter factor is exactly the
same for all the studied nuclei in the same sample. Finally, the
'H frequency dependence on the density is almost negligible,
indicating that in this case the effects of the intermolecular
interactions are roughly balanced by BSC. The latter result is
slightly different from the first observation of HCI in the gas
phase, done by Raynes et al. in 1962,*> where a stronger in-
termolecular effect in the proton shielding than BSC in our
experiment was found (in a constant external magnetic field
the resonance frequencies are directly proportional to the nu-
clear magnetic shielding, justifying these comments on inter-
molecular effects in proton shielding). Fig. 1 also presents the
primary *3CI/3"Cl isotope effect in the resonance frequency
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FIG. 1. Density dependence of 'H, 3He, 3°Cl, and 3’Cl resonance frequencies measured for gaseous HCI samples containing a small amount of helium-3 (see

Sec. 111 for details).

for an isolated HCI molecule. The observations of pure iso-
tope effects are possible only for gaseous compounds and
deliver important data for theoretical considerations, as has
already been shown for the deuterium isotopomers of methyl
fluoride.**

For comparison with the ab initio values, computed for
an isolated molecule, we need the experimental values at the
zero-density limit. Linear extrapolation of the experimental
data points to this limit gives: v(‘H) = 500.6069675(13),
v(He) = 381.3575191(7), v(**Cl) = 49.050368(20), and
v(’Cl) = 40.829294(42) MHz. The error bars are larger for
3Cl and ¥'Cl than for 'H and *He, reflecting the non-zero
electric quadrupole moment of both chlorine isotopes; the
case of ’Cl is particularly difficult due to the low natural
abundance of this isotope (24.47%). In the comparison of ex-

perimental and theoretical values we shall therefore focus on
the results for 'H¥CL.

IV. NMR SHIELDING CONSTANTS

The shielding constant of a nucleus X, ox, can be deter-
mined from the experimental data as

ox =1=T N5 (I —oy), 3)

where vz, pz, and I are the resonance frequencies, the nu-
clear magnetic moments and the spin numbers of both nu-
clei (Z = X,Y) and Apj = puzAI;/1Iz is the increment of
the projection of the magnetic moment on the axis of the ex-
ternal field. This equation is easily derived considering the
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resonance frequencies of two different nuclei, vx and vy,

hvx = Aux(1 — ox)By, 4)
hvy = Aug(1 — oy)By, )

and eliminating the external magnetic field induction By. We
shall assume here that all the necessary projection, sign and
spin-related coefficients can be easily taken care of and anal-
yse the values of 7. We stress that Eq. (3) may be used only
when the magnetic moments of both nuclei are known with
satisfactory accuracy.*’

This procedure can certainly be applied to evaluate o ('H)
in HCI, because very accurate magnetic moments of 'H and
3He are known. We use w('H) = 2.792847356(23) ux and
wCHe) = 2.127625306(25) pn, determined from o(PHe)
= 59.96743(10) ppm*® (see Refs. 41 and 47, uy is the nu-
clear magneton). The result, o('H) = 31.132 ppm, is in
very good agreement with another recent experimental value,
31.124(7) ppm.*8

A. Nuclear magnetic dipole moments of 3°Cl and %7ClI

When NMR shielding constants are known with higher
accuracy than one of the nuclear magnetic dipole moments,
Egs. (4) and (5) may be applied in a different manner. Namely,
one can determine this unknown magnetic moment pux as

vx (1 —oy) |
vy (I o) Y ©

Apk =
We consider this to be the case for the magnetic dipole mo-
ments of the >>Cl and 3’Cl isotopes and use this equation to
evaluate their accurate values. These moments have been re-
cently estimated to be 0.821698(13) and 0.683977(11) un,
respectively.* Both values are somewhat smaller than the
older TUPAC literature data, 0.8218743(4) ux for *Cl and
0.6841236(4) uy for 37C1.33 However, to obtain this estimate,
a nonrelativistic value of the shielding of C1~ ion in water,
taken from Ref. 23, has been used. Not surprisingly, when
our nonrelativistic values for the chlorine shielding constants
in gaseous HCl are taken as input data we obtain very similar
results: 0.821695 uy and 0.683975 uy, respectively.
Undoubtedly, more reliable values can be derived using
in Eq. (6) for the chlorine shielding constants the total val-
ues which include also the relativistic corrections. We can
compare the shielding constant ox and resonance frequency
vx of the nuclide of interest with the parameters of a pro-
ton (g, oy, vy) in the same isolated molecule.’*3! In this
approach (that is, X=Cl, Y=H in Eq. (6)) and applying the
experimental hydrogen shielding value 31.124 ppm as input
we find 0.821721(5) uy for ¥Cl and 0.683997(4) uuy for *’Cl
(to estimate the error bars, we assumed the accuracy of the
shielding constants to be 5 ppm for chlorine and +0.5 ppm
for hydrogen*’). We can also determine the magnetic mo-
ments considering helium-3 as our reference, and from Eq.
(6) with X=Cl, Y=He we obtain practically identical results.
As expected, a noticeable change in the evaluated nuclear
magnetic dipole moments is observed when we take into ac-
count the relativistic contribution to the chlorine shielding
constants.

J. Chem. Phys. 139, 234302 (2013)

V. CONCLUSIONS

For numerous nuclei the absolute shielding scales have
been established analysing the spin-rotation constants in small
molecules and applying Flygare’s relation to determine the
paramagnetic contribution. Although it was known that this
relation is valid only in a nonrelativistic approach,'®!! com-
puted ab initio shielding constants were usually not suf-
ficiently accurate to provide a useful alternative approach.
More recently, the development of accurate nonrelativistic
methods and — in particular — the progress in the calcula-
tion of spin-rotation and shielding constants at the relativistic
level of theory enabled the analysis of the role of Flygare’s
approximation.'>!® It has been previously shown that using
the spin-rotation data for tin compounds leads to very large
errors in NMR shielding constant; for much lighter elements
such as chlorine, the discrepancies should be much smaller.

Nevertheless, we find that the accuracy of the results for
HCl is significantly improved when we take into account rela-
tivistic effects. For the chlorine spin-rotation constant, the rel-
ativistic correction is practically negligible, but for hydrogen
it is very significant, being about 5% of the final value. The
effect of relativity is significant, not only when the desired
properties are calculated directly for the heavy centers, but
also when they are calculated for a lighter atom in the vicinity
of a heavy one (heavy-atom effect on the shielding of the light
atom, HALA®?). This can be traced to the observation that the
spin-orbit interaction, which is the most important contribu-
tor to the HALA effect on NMR shielding constants, also is an
important contribution to the spin-rotation constants.”-® Even
though we estimate the corrections from a relativistic DFT
approach, the agreement with experiment is clearly improved
compared to the nonrelativistic value. Also for the hydrogen
shielding constant, adding the relativistic correction undoubt-
edly improves the agreement with experiment. For chlorine,
our estimate of the (large) relativistic effect on the shielding
is in agreement with other ab initio results. We have also mea-
sured the chemical shift of *3Cl in gaseous HCI with respect
to the solvated chlorine ion. It is 29.76 ppm, thus we finally
estimate the absolute shielding constant of the standard NMR
chlorine reference (0.1 M solution of NaCl in D,0) as 1006
4+ 5 ppm. The change with respect to the value given in
Ref. 23 (974 + 4 ppm, obtained with a measured 28.5 ppm
chemical shift) is almost entirely due to the relativistic cor-
rection, which we have now included for HCI. The differences
between the *>CI and *’Cl results, <1 ppm, are too small to
enable a reliable analysis. We thus assume that previous ex-
perimental values, based on a nonrelativistic absolute shield-
ing scale, are less accurate than our ab initio result and sug-
gest using the result presented here to define the absolute scale
for the chlorine shielding. This also enables us to determine
new values for the chlorine magnetic dipole moments for both
isotopes: 0.821721(5) un for 3C1 and 0.683997(4) un for
37CL. For both isotopes, the new values of the nuclear mag-
netic moments confirm our earlier estimates** and are de-
creased by 0.02% with respect to the [IUPAC reference data.?
The agreement between the measured and calculated hydro-
gen shielding constant is noticeably improved when we in-
clude the large relativistic contribution, 0.841 ppm. Finally,
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we recall that the relativistic corrections to the spin-rotation
and shielding constants are in this work computed indepen-
dently, the simple nonrelativistic relation between these two
properties does not hold in the relativistic theory. The agree-
ment of the computed properties with the available experi-
mental data confirms the accuracy of the applied approach.
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