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A recently developed relativistic four-component density functional method for calculation of
nuclear magnetic resonance �NMR� shielding tensors using restricted magnetically balanced basis
sets for the small component �mDKS-RMB� was extended to incorporate the gauge including
atomic orbitals �GIAO� approach. The combined method eliminates a strong dependence of the
results, calculated with a finite basis set, on the choice of the gauge origin for the magnetic potential
of a uniform external magnetic field. Benchmark relativistic calculations have been carried out for
xenon dimer and the HX series �X=F, Cl, Br, I�, where spin-orbit effects are known to be very
pronounced for hydrogen shieldings. Our results clearly demonstrate that shieldings calculated at the
four-component level with a common gauge �i.e., without GIAO, IGLO, or similar methods to treat
the gauge problem� depend dramatically on the choice of the common gauge. The GIAO approach
solves the problem in fully relativistic calculations as it does in the nonrelativistic case. © 2010
American Institute of Physics. �doi:10.1063/1.3359849�

I. INTRODUCTION

Nowadays it is well known that calculations of nuclear
magnetic shielding constants in compounds containing heavy
elements require the proper inclusion of relativistic effects.
In modern computational quantum chemistry there exists a
variety of methods that take relativistic effects into consider-
ation: the effective core potential �ECP� approach, a pertur-
bational treatment of relativistic effects, quasirelativistic ap-
proaches, etc. While ECP or perturbational treatment of both
spin-orbit and scalar relativistic effects are often computa-
tionally less expensive, their applicability is limited. On the
other hand, two-component methods �which treat spin-orbit
operators variationally� can be already computationally
rather demanding while providing less accurate results than
fully relativistic four-component approaches. In recent years,
a number of two-component methods aimed to reach the
same precision as four-component methods was developed
�and some of them were also implemented�.1–7 Unfortu-
nately, these methods, if implemented without further ap-
proximations, lose their computational advantages and can
became even more expensive than fully relativistic ap-
proaches. Therefore probably the best way to obtain the most
accurate results for a reasonable computation cost is the use
of four-component methods.

For calculations of nuclear magnetic resonance �NMR�
shielding tensors �or another magnetic second-order
property—indirect nuclear spin-spin coupling� a second-
order perturbation theory has to be applied. In the nonrela-
tivistic case, this will typically involve the expansion of the

first-order perturbed wave function in terms of excited states
of the unperturbed system. That, in turn, requires the knowl-
edge of the vacant molecular orbitals �MOs�. At the four-
component level of theory the vacant states also include the
negative-energy states. This complicates the matters since
these states are sensitive to the choice of the basis set for the
small component. The arising computational difficulties are
often associated with the diamagnetic term �as it is called in
the nonrelativistic limit�.8 One way to reduce the difficulty is
to use unrestricted kinetically balanced basis sets.9 However
this approach leads to other problems �described in Refs. 10
and 11 and cited therein� and thus it is worth considering
alternative approaches. Since in the presence of a magnetic
field the exact relation between the large and the small com-
ponents involves field-dependent operators, one can choose,
as one of the possible solutions, a basis for the small com-
ponent dependent on the magnetic field. A concept of re-
stricted magnetically balanced basis was first suggested by
Aucar et al.9 and by Kutzelnigg.8,12 Recently we successfully
used this concept of magnetic balance to develop a four-
component method for calculations of NMR parameters—
shielding tensor13 and indirect nuclear spin-spin coupling
tensor.14 An alternative approach suggested by Kutzelnigg
�so-called Kutzelnigg’s transformation�8 was recently imple-
mented by Visscher15 and by Xiao et al..16 The approaches
based on Kutzelnigg’s transformation of the Hamiltonian fix
the problem associated with summation over negative states
by reducing the contribution from negative energy states
from O�c0� to O�c−4�. Thus methods based on this transfor-
mation can serve as efficient and accurate tools for shielding
tensor calculations. From the other side, this transformation
leads to operators which suffer from numerical instabilities
in case of the magnetic field due to the magnetic moment of
a nucleus that limits the applicability of the transformation
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for calculation of spin-spin couplings �for extensive discus-
sion see�.16–18 Another approach �orbital decomposition ap-
proach� to solve this problem was developed by Xiao and
co-workers.16,19 All these methods have however one serious
drawback—until recently20 they were implemented using a
common gauge �i.e., without special treatment of the gauge
problem by employing GIAO,21,22 individual gauge for local-
ized orbitals �IGLO�,23 or similar approaches�. What is “a
must” in most nonrelativistic programs for NMR shielding
tensor calculations still has not become a routine in four-
component calculations.

It is widely accepted that the use of London atomic or-
bitals �LAOs� reduces the basis set requirements. However it
will be a mistake to assign this desirable effect solely to the
gauge invariance of the resulting equations. The fact that the
use of LAO ensures the gauge independence of the calcu-
lated properties does not warrant meaningful results: one can
choose very bad �from the computational point of view�
schemes which would be still formally gauge independent
�see corresponding discussion in Ref. 24�. In the nonrelativ-
istic treatment the use of GIAO approach is justified by the
fact that for an atomic one-electron system LAOs provide the
exact first-order response of the wave function on a uniform
magnetic field. This is because the unperturbed wave func-
tion is an eigenfunction of the angular momentum operator
that is also responsible for the interaction with a uniform
external magnetic field.

In the fully relativistic framework the situation is more
complicated because now different operators define spherical
symmetry of the atomic system and interaction with a uni-
form external magnetic field. Therefore the first-order change
in the wave function �in relativistic problem for a hydrogen-
like atom� has along with leading four-component LAO term
also additional terms. These terms are at least of order c−2

with respect to the leading LAO term. They all have purely
relativistic origin and vanish in the nonrelativistic limit. That
justifies the use of LAOs in fully relativistic approaches.
Moreover, it is possible to show that in the fully relativistic
case the use of LAO ensures proper symmetry of calculated
shieldings �i.e., equal values on equivalent nuclei in a mol-
ecule� as well as first-order current and other magnetic prop-
erties as it does in the nonrelativistic case. The first consis-
tent fully relativistic four-component calculations of the
NMR shielding tensor �at Hartree–Fock level� using GIAO
techniques were reported a short time ago.25 This approach
employs an unrestricted kinetically balanced basis set.

Here we report on the extension of the magnetic balance
concept to include GIAO.26 In this work we show that the
restricted magnetic balance �RMB� condition and the GIAO
approach are compatible. The mDKS-RMB method that em-
ploys the GIAO was developed and implemented into the
MAG module of the ReSpect package. Our benchmark cal-
culations on a few small molecules demonstrate the vulner-
ability of the relativistic calculations with a common gauge
and effectiveness of the GIAO approach to solve the problem
in fully relativistic calculations as it does in the nonrelativ-
istic case.

II. CALCULATION OF NMR SHIELDING TENSOR
USING GAUGE INCLUDING ATOMIC ORBITALS

Below we keep the following conventions. The Hartree
system of atomic units is used. Summation over repeated
indices is assumed. The following index notation is em-
ployed: i, j denote occupied positive energy orbitals and �, �
are basis function indices. Cartesian directions are indexed
by u, v. Superscripts L and S denote the large and the small
components, respectively. We will use subscripts 2�2 and
4�4 to stress that the corresponding matrices are two- and
four-component, respectively.

Let us start with the expression for the total energy in the
presence of magnetic fields �the uniform external magnetic
field and the magnetic field due to the nuclear magnetic mo-
ment� within the framework of the four-component Dirac–
Kohn–Sham equations:

E�B� ,�� M� = ��i
�B� ,�� M��Dkin

00 + D10 + D01��i
�B� ,�� M�� + Epot

�B� ,�� M�,

�1a�

Dkin
00 � �� − 14�4�c2 + c�� · p� , �1b�

D10 � �� · A� B� 0, �1c�

D01 � �� · A� �� M , �1d�

Epot
�B� ,�� M� � Enuc

�B� ,�� M� + Eee
�B� ,�� M� + Exc

�B� ,�� M�, �1e�

where c is the speed of light, p� is the momentum operator
p� =−i�� , Dirac matrices �� and � have the usual form

�� = 	0 ��

�� 0

, � = 	12�2 0

0 − 12�2

 , �2a�

and vector �� = ��1 ,�2 ,�3� is composed of three Pauli matri-
ces,

�1 = 	0 1

1 0

, �2 = 	0 − i

i 0

, �3 = 	1 0

0 − 1

 . �2b�

The superscript �B� ,�� M� denotes the dependence on a uni-
form external magnetic field B� and nuclear magnetic moment
�� M of the Mth nucleus. The corresponding vector potentials
have the following form:

A� B� 0 = 1
2 �B� � r�G� , �3a�

A� �� M =
�� M � r�M

rM
3 , �3b�

where r�G�r�−r�0 �r�0 is the gauge origin� and r�M �r�−R� M �R� M

is the position of nucleus M�. The potential energy Epot
�B� ,�� M�

�Eq. �1e�� consists of the electron-nucleus Coulomb energy

Enuc
�B� ,�� M�, the electron-electron Coulomb energy Eee

�B� ,�� M�, and

the Kohn–Sham exchange-correlation energy Exc
�B� ,�� M� �we do

not employ relativistic current-dependent exchange-
correlation functionals�,

154101-2 Komorovský et al. J. Chem. Phys. 132, 154101 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Enuc
�B� ,�� M� � − �

M
�

�V�

ZM

rM
	0

�B� ,�� M��r��dV , �4a�

Eee
�B� ,�� M� �

1

2
� �

�V,V��

	0
�B� ,�� M��r��	0

�B� ,�� M��r���
�r� − r���

dVdV�, �4b�

Exc
�B� ,�� M� � �

�V�
	0

�B� ,�� M��r��
xc
�B� ,�� M��	k

�B� ,�� M��r���k=0
3 �dV . �4c�

Here 
xc
�B� ,�� M� is the exchange-correlation energy density,

where k=0,1 ,2 ,3, r� is the position vector, ZM is the charge

of the Mth nucleus, and 	k
�B� ,�� M� represents the total relativis-

tic electron density �k=0� and three spin densities
�k=1,2 ,3�,

	k
�B� ,�� M� � �i

�B� ,�� M�†�k�i
�B� ,�� M�, �0 � 14�4,

�� � 	�� 0

0 ��

 . �5�

The common way to calculate the nuclear magnetic shielding
tensor in the four-component framework is to expand the

four-component MOs �p
�B� ,�� M� in a finite set of basis func-

tions. There are two major sources of a poor basis set con-
vergence. The first one is due to the well-known gauge de-
pendence of the vector potential A� B� 0 and the second one is
related to the four-component nature of fully relativistic cal-
culations. Among the solutions of the gauge dependence
problem, the most popular one is to include the gauge depen-
dence directly into atomic orbitals �thus obtaining the so-
called London orbitals�. This leads to the LAO method in-
troduced first by London21 and developed later by
Ditchfield22 �also known as GIAO approach—gauge invari-
ant or gauge including atomic orbitals approach�. The second
problem, specific for the four-component case, is connected
to the choice of the basis set for the small component. While
the choice of the basis set for the large component is rather
straightforward and in many aspects it resembles the choice
of the basis in nonrelativistic calculations, the selection of a
basis for the small component is more difficult and crucial
for achievement of sensible results. The RMB concept is one
of the most efficient ways to deal with this problem.13 The
RMB concept provides a good balanced connection between
basis sets for the large and the small components, for a sys-
tem in the presence of magnetic fields, exactly in the same
way, as RKB condition does in their absence.27,28 This was
demonstrated in Ref. 13 for the case of a common gauge
origin.

The next logical step to solve simultaneously the two
problems discussed above would be to combine both ap-
proaches �GIAO and RMB� to obtain more stable results in
fully relativistic calculations of NMR shielding tensors. This
leads to a new mDKS-RMB GIAO method presented below.

Following the GIAO formalism, we will write the large

component of the ith MO �i
L�B� ,�� M� as a linear combination of

LAOs ��
�B� �,

�i
L�B� ,�� M� = C�i

L�B� ,�� M���
L�B� �, ��

L�B� � � �
�B� ���, �6�

where �
�B� � is the phase factor, which ensures the energy

invariance with respect to a change of the gauge origin r�0,

�
�B� � � exp�−

i

2c
�B� � �R� � − r�0�� · r�� , �7�

C�i
�B� ,�� M� represents the expansion coefficients for the system

in the presence of the external magnetic field B� and nuclear
magnetic moment �� M, and R� � is the position of the nucleus
at which the atomic orbital �� is centered. We have chosen
�� to be Gaussian-type orbitals, but other types of basis func-
tions can be used as well. Note that the basis function ��

does not depend on the magnetic fields, whereas the basis

function for the large component ��
L�B� � depends on the exter-

nal magnetic field through the phase factor. It is worth to
note that for even and odd � indices �� represent alpha � 1

0
�

and beta � 0
1

� spinors, respectively.

In the RMB framework, the small component �i
S�B� ,�� M� is

expanded as �see Ref. 13 for more details�

�i
S�B� ,�� M� = C�i

S�B� ,�� M���
S�B� ,�� M�. �8�

The basis functions for the small component ��
S�B� ,�� M� depend

on the magnetic fields via both RMB condition and the basis

function for the large component ��
L�B� �,

��
S�B� ,�� M� �

1

2c
	�� · p� +

1

c
�� · A� B� 0 +

1

c
�� · A� �� M
��

L�B� �. �9�

Due to identity

	p� +
1

c
A� B� 0
�

�B� � = �
�B� �	p� +

1

c
A� B� �
 , �10a�

A� B� � =
1

2
�B� � r���, r�� � r� − R� �, �10b�

the basis for the small component �9� can be rewritten in the
following form:

��
S�B� ,�� M� =

1

2c
�

�B� �	�� · p� +
1

c
�� · A� B� � +

1

c
�� · A� �� M
��. �11�

After defining the basis set expansion of the both large and
the small components �Eqs. �6�–�9�, �10a�, �10b�, and �11��,
we can formulate the second order perturbation theory for
the calculation of shielding tensors. NMR shielding tensor is
defined as a bilinear derivative of the energy �Eq. �1a��, with
respect to parameters Bu and �v

M,

�uv
M = � d2E�B� ,�� M�

dBud�v
M �

B� ,�� M=0

. �12�

Since we are looking for a second-order property—NMR
shielding, Dalgarno’s exchange theorem29 allows us to
choose the magnetic field, with respect to which the linear
response of MOs is expressed. If the magnetic moment of a
nucleus is chosen as the primary perturbation �as done by
Visscher et al.�30 then the nuclear shielding of the nucleus
and the spin-spin coupling constants of this nucleus with all
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others may be calculated in one shot. On the other hand in
nonrelativistic calculations, the usual choice of the primary
perturbation is the external uniform magnetic field as then all
shielding tensors are obtained at once. We will use the latter
option and we will search for the linear response of the MOs
to the external magnetic field.

The bilinear derivative of energy �1a� can be expressed
as

�uv
M = ��i

�1,0�u�D�0,1�v
M

��i
�0,0�� + ��i

�0,0��D�0,1�v
M

��i
�1,0�u� ,

�13a�

where

�i
�1,0�u � � d�i

�B� ,�� M�

dBu

�
B� ,�� M=0

, D�0,1�v
M

� � �D01

��v
M �

B� ,�� M=0

.

�13b�

Derivation of Eq. �13� is described in Ref. 13. Note that in
contrast with the nonrelativistic case, in the expression for
NMR shielding tensor, we have no bilinear �with respect to
the B� and �� M� operators in the Hamiltonian. From now on,
the superscript �0,0� means the independence of MOs, MO
coefficients, operators on both perturbations Bu, �v

M, whereas
�1,0�u and �0,1�v

M represent derivation with respect to Bu

and �v
M, respectively.

In calculations of the NMR shielding tensor the first step
is to obtain the linear response of MOs �Eq. �13b��. Since we
use now both RMB and GIAO ansatz, the four-component
spinors �the large component �6� and the small component
�8�� depend on the magnetic fields via MO coefficients,

RMB condition and phase factor �
�B� �. Thus the perturbed

MOs can be decomposed in three parts: the first two terms
resemble those in the mDKS-RMB CGO �common gauge
origin� approach �Eq. �16� in Ref. 13�, i.e., regular �i

r�1 , 0�u

and magnetic term �i
m�1 , 0�u, and an additional term that

comes from the phase factor �
�B� �,

�i
�1,0�u � �i

r�1,0�u + �i
m�1,0�u + �i

�1,0�u. �14�

The regular and the magnetic parts have the following form:

�i
r�1,0�u = 	 C�i

L�1,0�u��

C�i
S�1,0�u��

S�0,0� 
,

�i
m�1,0�u = 	 0

C�i
S�0,0���

Sm�1,0�u

 , �15a�

where

��
S�0,0� �

1

2c
�� · p���, ��

Sm�1,0�u �
1

4c2 �r�� � �� �u��. �15b�

The phase-related part �i
�1 , 0�u can be written in the follow-

ing two-component form:

�i
�1,0�u = 	C�i

L�0,0���
L�1,0�u

C�i
S�0,0���

S�1,0�u

 , �16a�

where

��
L�1,0�u �

i

2c
��r�0 − R� �� � r��u12�2��, �16b�

��
S�1,0�u �

i

4c2 ��r�0 − R� �� � r��u�� · p���. �16c�

Since the unperturbed �field-free� atomic orbital basis covers
the same space as the unperturbed MOs, we can express the
first term in Eq. �14� in the basis of the unperturbed MOs,

�i
r�1,0�u = �pi

Bu�p
�0,0�, �17�

where index p denotes occupied positive energy MOs as well
as unoccupied positive and all negative energy MOs. We
note that for calculation of phase related part �i

�1 , 0�u �like-
wise for the magnetic part �i

m�1 , 0�u� only the unperturbed MO
coefficients are necessary.

Since the derivation of the equation for mDKS-RMB-
GIAO is analogous to that of the original mDKS-RMB
method,13 below we will summarize only the final equations.
For the sake of simplicity, in the following we employ the
matrix notation C�i

�0,0�=C�i�
�0,0� and the shorthand notations

C�i�
L�0,0�=C�i�

L and C�i�
S�0,0�=C�i�

S . We keep subscript �p� in order

to stress that C�p� are coefficients for the pth MO. Substitut-
ing the partitioning �14� of the linear response of four-
component MO, together with the expressions for regular,
magnetic and phase-related part �Eqs. �15a�, �16a�, and �17��,
into the expression for chemical shielding �Eq. �13a�� we
obtain �after some technical manipulations�

�uv
M � ��D�uv

M + ��P0�uv
M + ��P1�uv

M , �18a�

��D�uv
M =

1

4c2�C�i�
L† C�i�

S† �	 0 �Bu�v
M

D†

�Bu�v
M

D
0


	C�i�
L

C�i�
S 
 ,

�18b�

��P0�uv
M =

1

2c
���ij

Bu�� + � ji
Bu��C�i�

L† C�i�
S† �	 0 �

�v
M

P†

��v
M

P
0



�	C�j�
L

C�j�
S 
 , �18c�

��P1�uv
M =

1

c
Re��ai

Bu�C�i�
L† C�i�

S† �	 0 �
�v

M
P†

��v
M

P
0

	C�a�

L

C�a�
S 
� ,

�18d�

where

���v
M

P ��� � ������ · p�	 r�M � ��

rM
3 


v

���� , �19a�

��Bu�v
M

D ��� � ������� · p� i�R� ��
− � r��u + �r�� � �� �u�

�
�r�M � �� �v

rM
3 ���� , �19b�
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R� ��
− = R� � − R� �. �19c�

The evident difference between the corresponding equations
for CGO approach �Eqs. �20� and �22a�–�22c� in Ref. 13� is
only in Eq. �18b�, where an additional diamagnetic operator
appears. Yet, more pronounced changes will be in linear re-
sponse coefficients �pi

Bu. It is clear from the following expres-
sions for these coefficients for occupied MOs

��ij
Bu�� + � ji

Bu = −
1

2c
�C�j�

L† C�j�
S† �	SL�1,0�u 0

0 SS�1,0�u



�	C�i�
L

C�i�
S 
 , �20a�

where

S��
L�1,0�u � ����i�R� ��

− � r��u����, SS�1,0�u �
1

2c2�̃Bu

P,

�20b�

��̃Bu

P��� �
1

2
����2�u + ��2r� − R� ��

+ � � p��u

+ i� p2

2
,�R� ��

− � r��u�
+
���� , �20c�

R� ��
+ = R� � + R� �, �20d�

and for the linear response coefficients for vacant MOs,

�ai
Bu =

1

2c

1


i
�0,0� − 
a

�0,0� �C�a�
L† C�a�

S† �

��VBu

L − 
i
�0,0�SL�1,0�u �̃Bu

P

�̃Bu

P VBu

S − 	1 +

i

�0,0�

2c2 
�̃Bu

P�
�	C�i�

L

C�i�
S 
 +

1


i
�0,0� − 
a

�0,0� �C�a�
L† C�a�

S† �

��V� 0

0
1

4c2W��	C�i�
L

C�i�
S 
 , �21a�

where

�VBu

L��� � ����i�R� ��
− � r��uV2�2

�0,0����� , �21b�

�VBu

S��� �
1

4c2 ��� · p����V2�2
�0,0���r�� � �� �u���

+ ��r�� � �� �u���V2�2
�0,0���� · p����

+ ��� · p����i�R� ��
− � r��uV2�2

�0,0���� · p����� . �21c�

V2�2
�0,0� �

�Epot
�0,0�

�	k
�0,0��r��

�k, k = 0,1,2,3. �21d�

In the nonrelativistic case the Eq. �20c� is often shown in
literature in a shorter form �see for example Ref. 31�. We,

however, prefer a slightly different expression, because here

matrix �̃Bu

P is obviously Hermitian �whereas in the usually
published form it is not�. The coupling terms V� and W�
have the same form as in the CGO case:

V��� � ����O2�2
�1,0�u����, W��� � ��� · p����O2�2

�1,0�u��� · p���� ,

�22a�

with

O2�2
�1,0�u �� ��Vee

�0,0��r�� + Vxc
�0,0��r���

�	k
�0,0��r���

	k
�1,0�u�r���dV�, �22b�

	k
�1,0�u = �i

�1,0�u†�k�i
�0,0� + �i

�0,0�†�k�i
�1,0�u, k = 0,1,2,3,

�22c�

where Vee
�0,0� and Vxc

�0,0� are the Coulomb electron-electron re-
pulsion potential and the exchange-correlation potential, re-
spectively. The linear response density 	k

�1 , 0�u has now three
parts �regular, magnetic, and phase-related, Eq. �14�� in con-
trast with the case of CGO where it consists of only two
parts: regular and magnetic. It is instructive to note that since
all the equations are meant to be valid for both open- and
close-shell systems one has to keep linear response of den-
sity in the equations �i.e., this response is nonzero for open-
shell systems�.

III. COMPUTATIONAL DETAILS

Structures of the HF, HCl, HBr, and HI molecules have
been taken from Ref. 32 and of C2H4 molecule from Ref. 33.
The internuclear distance in the Xe dimer was chosen as 20
Å. All calculations were performed at the density functional
theory �DFT� level, using the ReSpect �Ref. 34� program
�including the property module MAG-ReSpect�. Relativistic
calculations were done with a new four-component module
of ReSpect developed in Bratislava.26,35 We used the Becke
GGA functional for exchange36 with the Perdew GGA corre-
lation functional.37 Since the analytical evaluation of the
GGA kernels requires nontrivial programming, at present we
use a numerical scheme for calculation of the kernels �i.e.,
the derivatives of the corresponding potentials were taken
numerically�.

Orbital basis sets for the elements Br and I were those of
Faegri,38 used in a fully uncontracted fashion augmented by
a set of additional diffuse s-, p-, and d-functions, obtained by
dividing the smallest exponent of a given angular momentum
by a factor of 3. For light atoms �H, F, and Cl� we fully
uncontracted IGLO-III basis sets.39 To fill up “holes” in the
set of exponents �for better SCF convergence�, an extra
s-exponent was added to the basis sets for the heavier halo-
gen atoms �1.165 448 49 for Cl, 0.907 029 776 for Br, and
0.606 110 391 for I�. In calculations of shieldings in C2H4

molecule, we employed the uncontracted polarization-
consistent triple-zeta basis sets of Jensen �termed upcJ-2�
�Ref. 40� which were primarily designed for calculation of
spin-spin coupling. For Xe dimer calculations we used un-
contracted triple-zeta basis of Dyall.41 Fitting of the total
electron density and the components of the spin density was
done with uncontracted auxiliary basis sets �6s2p2d for H in
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calculations for HX series and 8s3p3d for C2H4,
15s11p11d3f3g for C, 11s7p7d for F, 13s8p8d for Cl,
18s13p13d for Br, 22s17p17d for I, 28s21p21d for Xe,
s-exponents were chosen as twice the s-exponents in the cor-
responding orbital basis set, and p- and d-sets �f- and g-sets�
were composed of shared exponents covering the space of
p-functions �d-functions� in the orbital basis sets multiplied
by 2 in an even-tempered manner�. Special attention was
paid to the accuracy of numerical integration. In particular,
the grid for numerical evaluation of integrals was denser in
the core area. The grid for numerical integration contained
256 points of radial quadrature and in the angular part we
used 110 points. All relativistic calculations were done with a
finite nucleus model employing the Gaussian charge
distribution.42

IV. BENCHMARK CALCULATIONS AND DISCUSSION

To demonstrate the importance of the GIAO treatment
and the correctness of the mDKS-RMB method and its
implementation when approaching the nonrelativistic limit,
we start our discussion with benchmark calculations of 1H
and 13C shieldings in C2H4 molecule where relativistic ef-
fects are expected to be very small. This molecule has been
placed nonsymmetrically: one of the hydrogens �H1� was
placed at �0,0,0� and the C2–H1 bond was directed along the
Z-axis. The common gauge origin was chosen at the coordi-
nate center �0,0,0�. Hydrogens H5 and H6 were bound to C3,
H5 being in cis-position with respect to H1. It allowed us to
judge about the gauge-dependence of the results by compari-
son of the calculated shieldings on different hydrogen and
carbon nuclei; due to the symmetry of the molecule all 1H
shieldings should be equivalent �the same holds for 13C
shieldings on both carbons�. In Table I, the obtained fully
relativistic mDKS-RMB and nonrelativistic CGO and GIAO
results for 1H and 13C shieldings are presented. Despite the
fact that in CGO calculations we have chosen a relatively
large basis set of Jensen �upcJ-2� the difference between
shieldings calculated on different hydrogen nuclei is dra-
matic: up to 4.6 ppm! Keeping in mind that the whole scale
of 1H shifts in organic compounds is about 12 ppm, this is an
evidence for strong gauge dependence. Obviously one can-
not use such approach �even with this basis set� in real ap-
plications. From the other side, the GIAO calculations per-
formed with the same basis set and for the same orientation
of the molecule are completely free from this drawback and
all the hydrogen shieldings are equal. The same conclusions
could be drawn also for shieldings calculated on carbon nu-
clei �here an insignificant difference of about 0.1 ppm occurs

which reflects the accuracy of numerical integration; the use
of a larger grid makes results more symmetric�. Comparison
of relativistic and nonrelativistic GIAO results shows that
they differ by about 1.8 ppm for 13C. While similar findings
were already reported �see for example Ref. 43 where such
corrections were calculated using a perturbation theory; for
13C in CH3F the calculated value was 2.52 ppm� it is remark-
able to see such large effects in molecules containing only
light elements. A detailed analysis of our results shows that
while diamagnetic and usual paramagnetic contributions dif-
fer only marginally �345.86 and �298.63 ppm in the nonrel-
ativistic case versus 345.89 and �298.23 ppm in relativistic
calculations�, the major difference �2.0 ppm� is due to a
purely relativistic contribution �sometimes called as FC/
SZ-KE in Breit–Pauli Hamiltonian—see Ref. 44 and cited
therein�. We believe that the remaining difference in diamag-
netic and paramagnetic contributions is due to numerical rea-
sons �the use of fitting for calculation of two-electron Cou-
lomb integrals in fully relativistic code as well as different
grid point distributions in our relativistic and nonrelativistic
codes�.

Let us consider another test example—xenon dimer. The
results are presented in the Table II. Two Xe atoms have been
well separated �20 Å� to ensure that they are not interacting.
The gauge origin was chosen at the position of the first Xe
atom �for comparison, an additional calculation with the
gauge in the center of symmetry was also performed�. The
CGO results indicate only a slight gauge-dependence, prob-
ably due to high symmetry of well-separated Xe atoms.
While one would expect that the shielding for the first atom
�at which the gauge-origin was placed� would be closer to
the result for an isolated atom, the opposite was found: the
shielding for the second atom is closer to the value for the
isolated Xe. This observation goes in parallel with nonrela-
tivistic results for shieldings in rare-gas dimers with long
interatomic distances. The rationalization of the phenomenon

TABLE I. 1H and 13C isotropic shieldings �in ppm� in C2H4 molecule calculated with common gauge origin
�CGO� and GIAO methods. �NR: nonrelativistic calculations. REL: relativistic mDKS-RMB calculations. The
data in columns are given for H1, H4, H5, H6, C2, and C3 �from left to right�. See text for description.�

Method 1H 1H 1H 1H 13C 13C

NR-CGO 27.8 26.3 24.7 23.2 47.2 44.4
REL-CGO 27.8 26.3 24.7 23.2 48.8 46.3
NR-GIAO 25.6 25.6 25.6 25.6 45.1 45.1
REL-GIAO 25.5 25.5 25.5 25.5 46.9 46.8

TABLE II. 129Xe isotropic shieldings �in ppm� in xenon dimer calculated
with CGO and GIAO methods. mDKS-RMB calculations.

Method 129Xe 129Xe

CGO-centera 7044.4 7044.4
CGO-Xeb 7046.7 7037.9
GIAOc 7033.3 7033.3

aCommon gauge was placed in the center of symmetry.
bCommon gauge was placed on the first atom. The data for this atom are
given in the left column.
cGIAO value corresponds exactly to the value calculated on isolated atom
129Xe.
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involves the fact that shielding of a spherical atom is gauge
independent45 and thus the contribution from MOs of the
second atom is decisive. In such case it is crucial to have a
good gauge for another atom rather than for the atom of
interest itself.45

The GIAO calculations were performed for the system
placed nonsymmetrically with respect to the coordinate
frame. This provided us an additional test for the mDKS-
RMB GIAO approach. From general considerations, NMR
shieldings on well-separated Xe nuclei in xenon dimer
should be equal to the NMR shielding for the isolated Xe
atom. This fact can be also derived from the mDKS-RMB
GIAO equations. Since in our test calculations �see Table II�
isotropic shieldings on both Xe nuclei are symmetric and
equal to the value calculated for the isolated Xe atom
�7033.3 ppm� we can conclude that this test supports the
correctness of our definition of relativistic LAO basis.

Table III illustrates the importance of the proper treat-
ment of the gauge-origin problem in shielding calculations in
the HX series �X=F, Cl, Br, I�, where relativistic spin-orbit
effects are known to be very pronounced.47 With this in
mind, the fully relativistic calculations with CGO were per-
formed using two different origins: either on H or on
X �X=F, Cl, Br, I� nuclei. The difference between 1H shield-
ings calculated in the same molecule but with such different
gauge origins dramatically increases along this series: 6.1
ppm for HF, 25.8 ppm for HCl, 95.4 ppm for HBr, and 165.1
ppm for HI molecules. Since this trend goes in parallel with
the nonrelativistic results �7.2, 27.3, 96.9, and 167.0 ppm;
calculated with the same exchange-correlation functional and
basis set� we can conclude that spin-orbit effects have mini-
mal gauge dependences �at least for this type of systems�.

Again, taking into account the typical value of 1H
shielding �about 30 ppm� and the overall range of 1H shifts
�about 12 ppm in usual organic compounds� one has to admit
that calculations of such accuracy are useless. On the other
hand, the shifts on the heavier nuclei are much less affected
by this gauge-origin problem: the corresponding differences
are 8.4 ppm for HF, 62.0 ppm for HCl, 35.0 ppm for HBr,
and 51.6 ppm for HI molecules. While these changes are also
significant in absolute values, they are much less dramatic
taking into account the values of the shielding in those mol-
ecules. For example, the 127I “gauges shift” in HI molecule is
only about 1% of the total shielding �5716.3 ppm; calculated
with GIAO�. Obviously, the importance of coupling terms
�which have purely relativistic nature�13 also increases along
this series for both hydrogen and heavy-elements nuclei. It is

interesting to note that the major part of the difference be-
tween the results with different common gauge origins �first
on iodine and then on hydrogen� comes from the diamag-
netic contribution to the perpendicular component of 1H
shielding tensor �increase by about 460 ppm� whereas the
change in the corresponding paramagnetic contribution is
much smaller �decrease of about 175 ppm�. Thus paramag-
netic contribution, being much more sensitive to the quality
of the basis set, fails to compensate the changes in the dia-
magnetic one. We found that addition of higher angular mo-
mentum functions on iodine increases �in absolute values�
the paramagnetic part and, as the result, decreases the gauge
dependence.

The comparison of the GIAO results with experimental
data reveals that the theoretical values overshoot the experi-
mental counterparts by a significant amount �up to 2.4 ppm
for 1H in HI molecule�. From our experience we know that
such overestimation usually has a rather systematic behavior
and therefore slightly affects the calculated shifts. Yet, the
fact that the biggest deviation was found for HI molecule can
indicate that we might slightly overestimate spin-orbit effects
due to the neglect of spin-other-orbit �Gaunt� terms in our
treatment of the spin-orbit operator. As it follows from our
experience with calculations of spin-orbit corrections to
chemical shifts and calculations of g-tensor �see Ref. 48�, for
light elements the contribution of the spin-other-orbit term
might be of about 25%–30% of the total value of the two-
electron spin-orbit terms and thus accounts for about 5%–
10% of overall spin-orbit effect �see extended discussion of
related questions in Refs. 48–50 and cited therein�. Certainly,
many other aspects, such as neglect of rovibration correc-
tions and the limited accuracy of the used exchange-
correlation DFT functionals, play a significant role too. How-
ever, their study lies outside of the scope of the present
paper.

The simple tests considered above demonstrate the seri-
ousness of the gauge-dependence problem in relativistic cal-
culations: the use of special approaches �like GIAO, IGLO,
and similar� to overcome the problem is, at least, as compul-
sory as it is in nonrelativistic calculations. Of course, em-
ployment of special approaches makes computational meth-
ods more complicated for realization. In particular, the use of
GIAO in the framework of the mDKS-RMB method requires
implementation of new integrals as it can be clearly seen, for
example, from comparison Eq. �27� in Ref. 13 with Eq.
�21c�. While at present, most of those integrals we calculate

TABLE III. Isotropic shieldings �in ppm� in HX �X=F, Cl, Br, I� series calculated with CGO and GIAO
methods. mDKS-RMB calculations.

Method

HF HCl HBr HI

19F 1H 35Cl 1H 81Br 1H 127I 1H

CGO-X 412.4 29.1 945.6 31.7 2889.1 35.0 5707.1 44.7
CGO-H 420.8 35.2 1007.6 57.5 2924.1 130.4 5758.7 209.8
GIAO 416.2 30.5 973.9 32.6 2899.4 36.4 5716.3 46.3
Exp.a ¯ 28.5 ¯ 31.1 ¯ 35.0 ¯ 43.9

aReference 46.
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using a numerical integration �as it is typical in DFT� we are
working on a new implementation that would include ana-
lytical evaluation of GIAO integrals.

In examples considered above the effect of adding basis
and/or fitting functions with higher angular momentum was
studied. Such increase in the basis had a negligible effect on
the GIAO results. This demonstrates that the use of RMB
approach in combination with LAO basis significantly re-
duces the basis set dependence of shielding tensors in fully
relativistic calculations in contrast with methods employing
unrestricted kinetic balance.25

V. CONCLUSIONS

In this work we developed a new method for fully rela-
tivistic calculation of NMR shielding tensor using the con-
cept of RMB and GIAO formalism. We demonstrated that
the RMB condition and the GIAO approach are compatible.
The mDKS-RMB method that employs the GIAO was de-
veloped and implemented into the MAG module of the
ReSpect package. The mDKS-RMB GIAO method was suc-
cessfully applied for calculations of the NMR shielding ten-
sors in hydrogen halides and xenon dimer. This work dem-
onstrates the importance of a proper treatment of gauge-
origin problem in the relativistic calculations of the NMR
shielding.
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