
THE JOURNAL OF CHEMICAL PHYSICS 124, 084108 �2006�
Resolution of identity Dirac-Kohn-Sham method using the large component
only: Calculations of g-tensor and hyperfine tensor
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A new relativistic two-component density functional approach, based on the Dirac-Kohn-Sham
method and an extensive use of the technique of resolution of identity �RI�, has been developed and
is termed the DKS2-RI method. It has been applied to relativistic calculations of g and hyperfine
tensors of coinage-metal atoms and some mercury complexes. The DKS2-RI method solves the
Dirac-Kohn-Sham equations in a two-component framework using explicitly a basis for the large
component only, but it retains all contributions coming from the small component. The DKS2-RI
results converge to those of the four-component Dirac-Kohn-Sham with an increasing basis set since
the error associated with the use of RI will approach zero. The RI approximation provides a basis
for a very efficient implementation by avoiding problems associated with complicated integrals
otherwise arising from the elimination of the small component. The approach has been implemented
in an unrestricted noncollinear two-component density functional framework. DKS2-RI is related to
Dyall’s �J. Chem. Phys. 106, 9618 �1997�� unnormalized elimination of the small component
method �which was formulated at the Hartree-Fock level and applied to one-electron systems only�,
but it takes advantage of the local Kohn-Sham exchange-correlation operators �as, e.g., arising from
local or gradient-corrected functionals�. The DKS2-RI method provides an attractive alternative to
existing approximate two-component methods with transformed Hamiltonians �such as
Douglas-Kroll-Hess �Ann. Phys. 82, 89 �1974�; Phys. Rev. A 33, 3742 �1986�� method, zero-order
regular approximation, or related approaches� for relativistic calculations of the structure and
properties of heavy-atom systems. In particular, no picture-change effects arise in the property
calculations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2173995�
I. INTRODUCTION

The direct numerical solution of the Dirac equation in a
four-component framework remains a complicated task even
for moderate-size molecular systems. Therefore, various ap-
proximate two-component methods with transformed Hamil-
tonians were suggested, e.g., the Douglas-Kroll-Hess1,2

�DKH� and zero-order regular approximation3 �ZORA� ap-
proaches �see Ref. 4 for reviews�. Most two-component
methods �ZORA and finite-order DKH� involve various ap-
proximations, which are not in all cases fully under control.
The implementations may nevertheless be computationally
demanding. Several attempts have been made recently to im-
prove the existing methods and/or to render them more
efficient.5

Here we reconsider the possibilities of solving the Dirac
equation at the Kohn-Sham level of theory using a basis for
the large component only, while avoiding drastic approxima-
tions. We start from the basic work of van Lenthe et al.6

They implemented the Dirac-Kohn-Sham method using a ba-
sis for the large component only �in the following we will
call this method DKS2� but found the approach computation-
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ally too demanding, as one-electron equations for each occu-
pied molecular orbital �MO� had to be solved separately due
to the dependence of the Fock matrix on the corresponding
one-electron energies. While the inversion of a matrix is not
a time-consuming step, the recalculation of the Fock matrix
for each occupied MOs �inevitably involving numerical cal-
culation of complicated integrals with the potential and other
operators in the denominator� was the computational
bottleneck.6 The problem may be avoided using ZORA,3

which can be viewed as an approach where the energy de-
pendence of the Fock matrices is removed simply by neglect
of the one-electron energies in the denominator. The price for
this simplification is that the basic equation being solved is
no longer the original Dirac equation, but rather an approxi-
mation to it with serious drawbacks �see Ref. 7 for a critical
discussion of the ZORA approximation�. Besides, the exist-
ing implementations of ZORA and of ZORA-based ap-
proaches usually consider only “collinear” exchange-
correlation potentials which do not contribute to �� and ��
blocks of the two-component Kohn-Sham matrix �this holds
also for the original DKS2 work6�.

Our alternative route to solving the Dirac-Kohn-Sham
equations employs the resolution of identity �RI� approach to

reformulate the basic Dirac-Kohn-Sham equations before
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elimination of the small component. Our method is related to
Dyall’s unnormalized elimination of the small component
�UESC� approach formulated at the Hartree-Fock level.8 Due
to complicated expressions and integrals arising from ex-
change contributions �because of the presence of the small
component�, Dyall applied his approach to one-electron sys-
tems only. We have been able to avoid these difficulties by
working within the DKS framework and considering only
nonrelativistic local or gradient-corrected functionals which
do not contribute to the nondiagonal terms. In this case we
can benefit from the fit of the electron density arising from
both small and large components, for the calculation of
exchange-correlation and Coulomb potentials. Here we re-
port the basic equations and the first implementation of the
DKS2-RI method for multielectron systems, using an ex-
plicit basis for the large component only. We use an unre-
stricted noncollinear two-component density functional
theory �DFT� approach,9 as implemented in our ReSpect

code.10 We will introduce the method in Sec. II and provide
computational details in Sec. III. In Sec. IV we provide first
one-electron spin-orbit splittings of the mercury atom and
subsequently pilot calculations of g-tensors and hyperfine
tensors for Cu, Ag, and Au atoms, and for three Hg com-
plexes �HgH, HgF, and HgCN�.

II. RESOLUTION OF IDENTITY DIRAC-KOHN-SHAM
METHOD

We start with a general formulation of the Dirac-Kohn-
Sham method for a nonrelativistic local-density aproxima-
tion �LDA� or generalized gradient approximation �GGA�
functional

� V̂2�2 c� · p

c� · p V̂2�2 − 2c21̂2�2

����i
L�

��i
S�
� = �i���i

L�
��i

S�
� , �1�

where �i is the one-electron energy, �i
L and �i

S are the large
and small components of the four-component molecular or-
bital �i , c is the speed of the light, p is the momentum

operator p=−i�, and � and 1̂2�2 are, respectively, the vector
composed of Pauli matrices and the identity matrix,

�1 = �0 1

1 0
�, �2 = �0 − i

i 0
�, �3 = �1 0

0 − 1
� ,

1̂2�2 = �1 0

0 1
� .

We use the notation V̂2�2 for the noncollinear potential to
distinguish it from the collinear potential �which does not
contribute to �� and �� blocks of the two-component Kohn-
Sham matrices for both the large and the small components�
used in the original DKS2 work,6 as well as in most ZORA
or related implementations.

Equation �1� may also be written as

ˆ L S L
V2�2��i � + c� · p��i � = �i��i � , �2a�
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c� · p��i
L� + �V̂2�2 − 2c21̂2�2���i

S� = �i��i
S� . �2b�

Equation �2b� serves as a basis for elimination of the small
component since it allows an expression of the small com-
ponent in terms of the large one,

��i
S� = c��2c2 + �i�1̂2�2 − V̂2�2�−1� · p��i

L� . �3�

By substituting Eq. �3� into Eq. �2a� one gets

	V̂2�2 +
1

2
� · pR̂�i�� · p
��i

L� = �i��i
L� , �4�

where

R̂�i� = 	�1 +
1

2c2�i� l̂2�2 −
1

2c2 V̂2�2
−1

. �5�

This is almost the same expression as was implemented
by van Lenthe et al.,6 except for their use of a collinear
potential. We will continue to call the explicit use of Eqs. �4�
and �5� the Dirac-Kohn-Sham two-component �DKS2�
method. As noted already in the Introduction, Eqs. �4� and
�5� lead to a few well-known problems such as the depen-
dence of the Fock matrix on the �i and the necessity of

evaluating integrals containing operator R̂�i� numerically on a
grid �which is a computationally much more demanding task
than the usual evaluation of the exchange-correlation poten-
tial on a grid in DFT�. To reduce the computational effort to
an affordable level, substantial additional approximations to

R̂�i� were initially suggested by Chang et al.11 and were later
rediscovered and worked out in detail by van Lenthe et al.
under the name ZORA:3 among other things the one-electron

energy in the denominator �cf. R̂�i�, Eq. �5�� is set to zero.
Further approximations were made subsequently.12

We have followed a different route to get around the
complicated dependences on the potential and one-electron
energies �see Eq. �5��. Instead of using Eq. �3�, we take a step
back and apply the RI approximation directly to Eq. �1�.
Thus, we introduce a completeness relation for the basis of
the large component �Eq. �6��, as well as the corresponding
relation for the formal basis �see below� of the small com-
ponent �Eq. �7��,

l̂ = ����S�	
−1��	� �6�

l̂ = �� · p���S�	
−1�� · p�	� , �7�

where �	 is an atomic orbital and

S�	 = �����	� �8�

and

S�	 = �� · p���� · p�	� �9�

are overlap matrices for the large and small components.
Actually, the overlap matrix for the small component is twice
the nonrelativistic kinetic-energy contribution to the Fock
matrix,

T = �
p2

� =
1

S �10�
�	 � � 2
 	� 2 �	
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Practically, we work with the formal basis for the small
component: � ·p�	. This parallels the idea of Dyall,8 who
expressed the small component through the “pseudolarge”
component 
i

L :�i
S= �1/2c�� ·p
i

L. This allows us to avoid
an introduction of an additional kinetically balanced basis set
for the small component explicitly. Since we use RI for the
small component in the kinetically balanced basis set, we do
not need to project the small component onto the basis for
the large component. That would be a drastic approximation
setting up an extremely high demand on the basis set used.

Now, after multiplying Eq. �2b� from the left side by
�� ·p��� and using the RI, we can express the small compo-
nent via the large one as

�� · p����i
S� =

1

c
T�����i�

−1���T�	S	�
−1�����i

L� , �11�

with ��i� and W given by

��i� = �1 +
1

2c2�i�T −
1

4c2W �12�

and

W�	 = �� · p���V̂2�2�� · p�	� . �13�

A close look at Eqs. �11�–�13� shows that we have
reached our goal: the evaluation of complicated integrals on
a grid is replaced by analytical computations of much sim-
pler integrals �only the exchange-correlation potential is
evaluated numerically in the usual manner� and by multipli-
cations and inversions of matrices. Since the inversion of a
matrix usually is not a time-consuming step, this matrix for-
mulation of the elimination of the small component has
solved most problems of the original DKS2 method.

Now we may write the equation for the MO coefficients
of the large component only as

�V + T��i�
−1T�C�i� = �iSC�i� �14�

where

��i
L� = C�i���� .

We will keep index i even in the matrix notation in order to
stress that we obtain these coefficients from the i-dependent
Fock matrix. Equation �14� is the basic equation of the reso-
lution of identity Dirac-Kohn-Sham �DKS2-RI� method. We
note here that all operators in Eq. �14� are Hermitian. The
additional computational effort in comparison with a nonrel-
ativistic noncollinear Kohn-Sham �i.e., two-component DFT�
approach is minor and consists only of the inversion of the
Fock matrix and of ��i� for all occupied molecular orbitals.
Since the inversion of a matrix is fast �where necessary linear
scaling techniques may be employed�, the method may be
made almost as fast as a nonrelativistic noncollinear two-
component DFT approach.

Notably, even though we work now with MO coeffi-
cients for the large component only, the small component is
implicitly present: we use it for the calculation of the density,
the potentials, and for normalization. Since we have to nor-
malize a four-component solution vector, both small and

large components contribute to the normalization condition
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1 = ��i
L��i

L� + ��i
S��i

S� = C�i�
† SC�i�

+
1

2c2C�i�
† T��i�

−1T��i�
−1TC�i�. �15�

This normalization also does not require any time-
consuming efforts. It is worth noting that, while we obtain
the MO coefficients for the large component from different
Fock-type matrices �due to their dependence on one-electron
energies of occupied MOs�, the resulting full MOs �built
from both the large and the small component� are still or-
thogonal in the limit of the complete basis set �that is, the
only restrictions relate to the quality of the RI�. The orthogo-
nality is fulfilled since our formulation of the problem corre-
sponds to the original formulation through the Dirac equa-
tion. This makes the DKS2-RI approach fundamentally
different from the Wood-Boring method which neglects con-
tributions of the small component to the total density and
spin densities �resulting in the loss of orthogonality
conditions�.13

The Dirac-Kohn-Sham total energy may be written as
�here and in the following, summation over i is assumed�

Etot = ���i
L���i

S��� Ê2�2 c� · p

c� · p Ê2�2 − 2c2l̂2�2

����i
L�

��i
S�
� , �16�

where Ê2�2 is an energy operator which is closely related to

the V̂2�2 potential but differs from it in the usual way �by a
coefficient of 0.5 in front of the Coulomb electron-electron
interaction and by a different exchange-correlation part�. At
this point, we can use the RI again in form of Eqs. �6� and
�7� to obtain an expression for the total energy in terms of
MO coefficients,

Etot = C�i�
† EC�i� + C�i�

† T��i�
−1TC�i�

+ C�i�
† T��i�

−1� 1

4c2 �E − W� +
1

2c2�iT���i�
−1TC�i�,

�17�

where

E�	 = ����Ê2�2��	� , �18�

E�	 = �� · p���Ê2�2�� · p�	� �19�

The strategy of the DKS2-RI method is as follows: the
nonrelativistic kinetic energy �see Eq. �10��, nuclear
potential- and overlap �see Eq. �8�� are evaluated only once
in the beginning of the self-consistent-field �SCF� procedure,
and it is sufficient to calculate the remaining integrals re-
quired only once per iteration. All integrals except for the
exchange-correlation terms may be evaluated analytically.
We use fitting of both the total density and the spin density
�x ,y, and z components� to reduce the computational effort
�this requires some additional integrals at every SCF itera-
tion, but they can also be evaluated analytically�.

What are the advantages and disadvantages of the
DKS2-RI method in comparison with the existing methods,

6
in particular, with the DKS2 method of van Lenthe, et al.
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and with the methods suggested by Dyall?8 The DKS2 ap-
proach is extremely time consuming due to the need to re-
evaluate numerically the Fock matrix for each occupied MO
�due to a complicated dependence of the Fock matrix on the
�i—cf. Eq. �5��. In the DKS2-RI method this problem is
avoided by using the RI and by rewriting the DKS equations
in a matrix form before elimination of the small component.
We still need to recalculate the new Fock matrix for each
occupied MO but only with the small extra cost of a matrix
inversion and of a few matrix multiplications. In both ap-
proaches, the Fock matrix has to be inverted for each occu-
pied MO. But this step is not a computational bottleneck. A
main advantage of the DKS2-RI method is that all integrals
except for the exchange-correlation potential can be calcu-
lated analytically. This allows the use of a much smaller
integration grid than needed for the DKS2 method.

Our approach is very close to Dyall’s UESC method,
which was formulated at the Hartree-Fock level8 and applied
only to one-electron systems. This was probably due to the
tremendous effort required to implement and evaluate four-
index exchange integrals arising from the small component.
In the absence of exact-exchange admixture these problems
do not appear. Further computation efficiency in our
DKS2-RI implementation is gained by fitting together elec-
tron density �and components of the spin density� arising
from both the large and small components. Thus the evalua-
tion of Coulomb and exchange-correlation potentials does
not introduce any additional problems. Another method sug-
gested by Dyall, the normalized elimination of the small
component8�b� �NESC� may also be formulated at the DKS
level. NESC is particularly interesting, as it allows the use of
only one Fock matrix to find all MOs. However, the price is
that one has to recalculate the overlap matrix �which in-
volves parts of the small component� and to invert the matrix
of MO coefficients at every SCF iteration. It is likely that a
NESC-based DFT method and DKS2-RI will exhibit a simi-
lar computational effort. Since both methods should have
their own advantages, we plan a NESC-DKS implementation
too.

A related approach was recently suggested and imple-
mented by Filatov5�b� who used the RI approximation at the
infinite-order regular approximation �IORA� level. We think
that the present DKS2-RI method has a number of advan-
tages, in particular, �a� it converges to the exact DKS result
with increasing the basis set, whereas IORA does not; �b�
DKS2-RI exhibits no problems with so-called “picture-
change effects” in property calculations �see discussion in
Sec. III�; and �c� the present DKS2-RI implementation in-
cludes spin polarization at the noncollinear DFT level, pro-
viding an attractive basis for the calculations of electron
paramagnetic resonance �EPR� properties where spin polar-
ization plays a crucial role �see below�.

III. CALCULATION OF g-TENSOR AND HYPERFINE
TENSOR WITH THE DKS2-RI METHOD

Before delving into the derivation of the equations for g
tensor and hyperfine tensor at the DKS2-RI level, we outline
briefly the general procedure followed. We start with the ex-

pression for the total energy in the presence of a magnetic
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field within the four-component Dirac-Kohn-Sham frame-
work. This allows us to apply perturbation theory and the
Hellmann-Feynman theorem without further complications.
Then, after formulating the expressions for the g-tensor and
hyperfine structure tensors, we will again use the matrix rep-
resentation and resolution of identity to formulate the final
equations via MOs for the large component only. It is thus
clear that for these first-order properties the RI is only used
as a technical tool to simplify the equations. Notably, we
always stay within the Dirac four-component picture for the
operators and therefore no problems arise associated with
picture-change effects that are intrinsic to methods such as
DKH or ZORA.

The total energy in the presence of a magnetic field in
the four-component DKS method can be obtained from Eq.
�16� by the principle of minimal coupling as

E�Jv,A� = ���i�Jv,A�
L ���i�Jv,A�

S ��

��Ê2�2�Jv� c� · �

c� · � Ê2�2�Jv� − 2c21̂2�2

�
����i�Jv,A�

L �

��i�Jv,A�
S � � , �20�

where �=p+ �A /c�, �i�Jv,A� is the four-component ith MO in
the presence of a magnetic field characterized by a vector
potential A, and v is the direction of the total magnetization
vector J.

Below, we will use the following definitions of g-tensor
and hyperfine structure �HFS� tensor �for a detailed discus-
sion of the definitions and related issues, see Refs. 9 and
14–16 and work cited therein�:

guv =
2c

�S̃v�
� ���i�Jv,0��Ê�Jv,Bu���i�Jv,0��

�Bu

�
Bu=0

, �21�

Auv
M =

1

�S̃v�
� ���i�Jv,0��Ê�Jv,Iu

M���i�Jv,0��

�Iu
M

�
Iu
M=0

, �22�

where Bu and Iu
M are the external magnetic field and magnetic

moment of nucleus M , �S̃v� is an effective spin used to char-
acterize the system under study, and the summation over
occupied MOs is assumed. Index 0 means that the corre-
sponding MOs are independent of the vector potential �due
to an external magnetic field or nuclear magnetic moment�.
Below we will use the notation Ê�Jv,A� for the four-
component energy operator in the presence of a magnetic

field �see Eq. �20��, that is either Ê�Jv,Bu� or Ê�Jv,Iu
M�. All ex-

pressions are now already written in terms of unperturbed
MOs, and we may therefore use all the machinery developed
in the previous section �that is, we may switch from the

four-component to the two-component approach�.
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��i�Jv,0��Ê�Jv,A���i�Jv,0��

= E�Jv,0� +
1

2c
C�i,Jv�

† �†��i,Jv�
−1 TC�i,Jv�

+
1

2c
C�i,Jv�

† T��i,Jv�
−1 �C�i,Jv� + ��A2� , �23�

where

��	 = �� · p���� · A��	� , �24�

E�Jv,0� = C�i,Jv�
† E�Jv�C�i,Jv� + C�i,Jv�

† TQ�i,Jv�TC�i,Jv�, �25�

Q�i,Jv� = ��i,Jv�
−1 +

1

2c2��i,Jv�
−1

��1

2
�E�Jv� − W�Jv�� + �iT���i,Jv�

−1 , �26�

with the vector potential A either due to the external mag-
netic field

A =
1

2
�B � rG�, rG = r − r0 �27�

or the magnetic moment of nucleus M

A =
�M � rM

rM
3 , �M = gM�NIM . �28�

Here r0 is an arbitrary fixed gauge origin, �M is a magnetic
point dipole, describing the magnetic moment of the Mth
nucleus, �N is the nuclear magneton, me and mp are the elec-
tron and proton masses, respectively, gM =gnuc�me /mp�, and
gnuc is a nuclear g-value. Thus the final expressions for g-
tensor guv and HFS Auv

M are

guv =
1

�S̃v�
�C�i,Jv�

† �B�u�
† ��i,Jv�

−1 TC�i,Jv�

+ C�i,Jv�
† T��i,Jv�

−1 �B�u�C�i,Jv�� , �29�

Auv
M =

1

2c�S̃v�
�C�i,Jv�

† �IM�u�
†

��i,Jv�
−1 TC�i,Jv�

+ C�i,Jv�
† T��i,Jv�

−1 �IM�u�C�i,Jv�� , �30�

where

��B�u���	 =
���	�Bu�

�Bu
=

1

2
�� · p����rG � ��u��	� , �31�

��IM�u���	 =
���	�Iu

M�
�Iu

M

= gM�N�� · p�� �rM � ��u

rM
3 �v� . �32�

A detailed derivation of Eqs. �20�–�32� will be presented
elsewhere.17 Note that in our calculations all gauge correc-
tion terms are included automatically. The calculation of all

expressions is straightforward and fast as one may expect
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from the calculation of a first-order property �it takes only a
fraction of the SCF computation time�. The implementation
of this approach �based on the resolution of identity� for the
calculation of magnetic properties is currently under way. As
the large and small components are obtained from DKS2-RI
�see Sec. II�, all integrals necessary for the calculation of
HFS and g-tensors may also be obtained from them by nu-
merical integration. This option has been used in the present
work.

IV. COMPUTATIONAL DETAILS

The structures of the Hg complexes have been taken
from Ref. 18. All calculations were performed at the DFT
level, using the ReSpect �Ref. 10� program �including the
property module MAG-ReSpect�. In this initial study we will
exclusively use the local Vosko-Wilk-Nusair exchange-
correlation functional19 �referred to as LDA below�. The ba-
sis set used for RI was identical to the orbital basis set. For
heavy elements �Cu, Ag, Au, and Hg� we used basis sets due
to Faegri20 in a fully uncontracted fashion augmented with a
set of additional s , p, and d diffuse functions �and f functions
for Au and Hg�, obtained by dividing the smallest exponent
with the same angular momentum of a given basis by a fac-
tor of 3. For light nuclei �H, C, N, and F� we used the fully
uncontracted IGLO-III basis of Kutzelnigg et al.21 For fitting
of the total electron density and the components of spin den-
sity, even-tempered uncontracted auxiliary basis sets were
used �6s /2p /2d for H; 11s /7p /7d for C, N, and F;
18s /12p /12d /9f /9g for Cu; 22s /15p /15d /12f /12g for Ag;
and 24s /17p /17d /14f /14g for Au and Hg�. Special attention
was paid to the accuracy of numerical integration. The grid
for numerical integration contained 256 points of radial
quadrature for heavy atoms and 64 for light ones. For the
angular part, we used 86 points in atomic calculations and
110 points otherwise.

As a reference point for comparison, we have also
implemented the computationally very demanding DKS2
method without DKS2-RI approximation, following straight-
forwardly Eqs. �4� and �5�. Note that the method differs from
the original one6 by the use of the noncollinear potential

V̂2�2.

V. RESULTS AND DISCUSSION

Before going to HFS and g-tensor results, we discuss
briefly the one-electron spin-orbit splittings of the Hg atom
�i.e., differences between one-electron spinor energies, see
Table I�. The SO splittings calculated with the DKS2-RI
method are very close to the results obtained with the exact
DKS2 implementation. The remaining difference may be at-
tributed to the use of RI as well as to the effects of numerical
integrations �DKS2 is much more sensitive to the quality of
the grid than the DKS2-RI method�. The results of these two
approaches are in very good agreement also with the four-
component results of Engel et al.,22 keeping in mind the
differences in basis sets and exchange-correlation functionals
�exchange-only LDA, i.e., X�, in Ref. 22�. DKH calculations
give reasonable results for the higher MOs �with the excep-

23
tion of the results of Mayer et al. which behave nonmono-
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tonically, probably due to additional approximations in-
volved� but deviate significantly for the deepest orbitals.
Overall the results show that DKS2-RI reproduces essen-
tially the results of the exact DKS2 approach, while DKH
gives a noticeable overestimation of the spitting for the low-
est MO. These results give us confidence in the DKS2-RI
method.

The isotropic hyperfine couplings of the group 11 atoms
are often used for benchmark studies. Tables II and III pro-
vide the isotropic HFS and g-values for Cu, Ag, and Au with
DKH �see Ref. 24 for more details on the theory� and
DKS2-RI methods, compared to the available ZORA �Ref.
25� results and experimental data. For Cu, all the methods
give very similar results. This was expected since relativistic
effects play only a relatively small role for the 3d element.
All calculations overestimate the experimental value. This is
probably due to the use of LDA. Other computational details
�e.g., basis-set limitations and point nucleus approximation�
are not expected to explain the discrepancy.

For Ag, DKH and DKS2-RI give very similar results,
whereas the ZORA results from Ref. 25 are slightly different.
Again, all theoretical absolute values are somewhat too large,
probably again due to the use of LDA �here basis-set and
finite-nucleus effects may also contribute already to compu-
tational errors�. The DKS2-RI result for Au is in perfect
agreement with the experiment. Unfortunately, this is prob-
ably due to error compensation: the use of a larger basis set
�as judged from previous DKH results24 with the basis set26

of Tsuchiya et al.� might increase the HFS value by about
10%–15%, whereas some pilot calculations suggest that the
use of a finite-nucleus model would decrease them by about
the same amount. Again, the effect of the LDA has to be kept
in mind.

TABLE I. One-electron spin-orbit splittings of the Hg atom. All values in a

Method DKH �this work� DKH �this work� DKH �this work�
Basis Tsuchiya et al.a Tsuchiya et al.a Faegria

Functional HF LDA LDA

2p1/2→2p3/2 76.12 75.26 74.99
3p1/2→3p3/2 17.15 16.73 16.64
3d3/2→3d5/2 3.38 3.31 3.33
4p1/2→4p3/2 4.20 4.06 4.03
4d3/2→4d5/2 0.74 0.70 0.70
4f5/2→4f7/2 0.16 0.14 0.15
5p1/2→5p3/2 0.74 0.72 0.72
5d3/2→5d5/2 0.074 0.066 0.067

aBasis sets due to Tsuchiya et al. �Ref. 26� or Faegri �Ref. 20�.
bExchange-only LDA calculations �Ref. 22� �essentially these are X� results

TABLE II. Isotropic HFCs �in MHz� of group 11 atoms.

Atom ZORA �ADF�a DKH �ReSpect�b,c DKS2-RI �ReSpect�b Exp.a

Cu 6750 6725 6737 5867
Ag −1909 −1984 −1967 ±1713
Au 3134 3367 2986 3053

aZORA results �DFT LDA, STO basis sets and restricted two-component
calculations� and experimental data were taken from Ref. 25.
bLDA and Faegri basis sets �see text for details�.
c
Unrestricted one-component calculations.

Downloaded 30 Mar 2006 to 132.187.69.6. Redistribution subject to 
The results for atomic g-values �Table III� are less infor-
mative, as deviations from the free-electron value are very
small for these atoms with d10s1 configuration, except for Au.
It is interesting to note that the DKH and DKS2-RI ap-
proaches give a positive deviation from the free-electron g-
value �in agreement with the experimental data�, whereas the
ZORA value is slightly below ge. The most probable reason
for the deviation is that two-component ZORA approach was
implemented and used in the calculations of HFS and
g-tensors in a restricted fashion �this is suggested by prelimi-
nary results using our unrestricted two-component ZORA
implementation�.27

Table IV presents isotropic and anisotropic HFS data for
HgX complexes, obtained with one-component ZORA and
DKH and two-component ZORA and DKS2-RI methods.
Note that in contrast to the other results the two-component
ZORA calculations were done in a spin-restricted fashion.18

Furthermore, the ZORA calculations were done with the
BP86 GGA functional and STO basis sets, whereas our DKH
and DKS2-RI results were obtained with LDA functional and
GTO basis sets.

The DKH results are generally above ZORA for Aiso for
reasons discussed before.24 The DKS2-RI results are some-
what closer to the ZORA data �keeping in mind that the
appreciable differences between one- and two-component
ZORA result for HgF and HgH� and thus closer to the ex-
periment than the one-component DKH for HgH and HgCN
but somewhat further for HgF. The inclusion of spin polar-
ization is of particular importance for HgH �as suggested by
an analysis of the data presented in Ref. 18�: the inclusion of
spin polarization in one-component calculations decreases
the isotropic value by about 250 Hz, thus dramatically im-
proving the agreement with the experiment. In the case of

F stands for Hartree-Fock results.

�Ref. 23� DKS2 �this work� DKS2-RI �this work� Dirac-4 �Ref. 22�
Faegria Faegria

LDA LDA LDA exc.-onlyb

.65 70.69 71.22 71.49

.11 15.62 15.76 15.83

.86 3.39 3.39 3.39

.90 3.78 3.81 3.83

.82 0.71 0.71 0.71

.23 0.15 0.15 0.15

.69 0.67 0.68 0.68

.0079 0.067 0.068 0.067

TABLE III. g-values of group 11 atoms.

Atom ZORA �ADF�a DKH �ReSpect�b DKS2-RI �ReSpect�b Exp.a

Cu 2.002 29 2.002 29 2.002 33 2.0025
Ag 2.002 29 2.002 29 2.002 37 2.0022
Au 2.002 27 2.003 13 2.003 23 2.0042

aZORA results �DFT BP86, STO basis sets and restricted two-component
calculations� and experimental data were taken from Ref. 25.
b

.u. H

DKH

LDA

72
16
3
3
0
0
0
0

LDA and Faegri basis sets �see text for details�.
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Aaniso, the most noticeable differences between methods per-
tain to one-component versus two-component approaches.
The latter provide about twice larger values than the former,
suggesting an appreciable importance of spin-orbit �SO� cou-
pling. For HgF and HgCN, the two-component data are thus
closer to the experiment, whereas they are too large for HgH.

For g-tensors of the same systems �Table V�, DKS2-RI
appears to perform somewhat better than spin-restricted two-
component ZORA �this might arise from the approximations
made in the ZORA SO operators, or from spin polarization,
which is known to affect g-tensors9,16�. The differences be-
tween DKS2-RI and DKH data are very small. This is not
surprising, as g-tensor is not very sensitive to the core area

TABLE IV. 199Hg HFCs tensors �in MHz� for some Hg complexes.

Complex Method Aiso Aaniso
a

HgH ZORA-1c �ADF�b,c 7 004 638
DKH-1c �ReSpect�c,f 7 984 712
ZORA-2c �ADF�b,d 9 018 2268
DKS2-RI 6 357 2176

Expt.e 7 002 1182
HgF ZORA-1c �ADF�b,c 18 195 330

DKH-1c �ReSpect�c,f 21 212 347
ZORA-2c �ADF�b,d 19 819 782
DKS2-RI 19 292 603

Expt.e 22 127 742
HgCN ZORA-1c �ADF�b,c 15 202 511

DKH-1c �ReSpect�c,f 17 438 555
ZORA-2c �ADF�b,d 15 905 1506
DKS2-RI 14 993 1429

Expt.e 15 850 1380

aAaniso=A�-A�.
bZORA results �DFT BP86 and STO basis sets� and experimental data were
taken from Ref. 18.
cUnrestricted one-component calculations.
dRestricted two-component calculations.
eReference 18.
fLDA, basis sets: Faegri basis on Hg and IGLO-II on light atoms �see text
for details�.

TABLE V. g-tensors for some small Hg complexes.

Complex Method g� g�

HgH ZORA �ADF�a 1.9723 1.7505
DKHb,c 1.9804 1.7972
DKS2-RI 1.9811 1.7950
Expt.d 1.976�2� 1.8280

HgF ZORA �ADF�a 1.9883 1.9362
DKHb,c 1.9895 1.9487
DKS2-RI 1.9892 1.9521
Expt.d 1.993�1� 1.961�1�

HgCN ZORA �ADF�a 1.9839 1.8651
DKHb,c 1.9845 1.8732
DKS2-RI 1.9853 1.8823
Expt.d ¯ 1.8789

aZORA results �DFT BP86, STO basis sets, and restricted two-component
calculations� and experimental data were taken from Ref. 18.
bLDA, basis sets: Faegri basis on Hg and IGLO-II on light atoms �see text
for details�.
cUnrestricted two-component calculations �present work�.
d
Reference 18.
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where DKS2-RI and DKH differ most. This gives us addi-
tional confidence in our recent DKH results.9

VI. CONCLUSIONS

A method for the solution of the Dirac-Kohn-Sham
equations in a two-component fashion using a basis for the
large component only has been developed and implemented
and was applied to g-tensor and hyperfine tensor calculations
of a few atoms and molecules of heavy elements. The ap-
proach, termed DKS2-RI, is closely related to Dyall’s UESC
method. However, in contrast to the latter, which was formu-
lated at the Hartree-Fock level and applied to one-electron
systems only, DKS2-RI takes full advantage of the local or
gradient-corrected exchange-correlation potentials and has
been applied here to the multielectron case. The DKS2-RI
results should converge to those of exact DKS with an in-
crease of basis set since the error associated with the use of
RI vanishes. DKS2-RI is an attractive alternative to currently
existing approximate two-component methods �such as
Douglas-Kroll-Hess, ZORA, or others� for relativistic calcu-
lations of the structure and properties of molecules. In spite
of the formal two-component framework of DKS2-RI, no
picture-change problems arise in the property calculations.
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